
Select and Sample – A model of efficient
neural inference and learning

Jacquelyn Shelton

Frankfurt Institute for Advanced Studies

with Jörg Bornschein, Saboor Sheikh, Pietro Berkes, Jörg Lücke

Feb 15th, 2012

Introduction

World / Stimulus Representation
 of Stimulus

cat fox platypus

I Experimental neuroscience evidence: perception
encodes and maintains posterior probability distributions
over possible causes of sensory stimuli

I Most likely stimulus interpretation(s) + associated
uncertainty

Introduction - Motivation

World / Stimulus Representation
 of Stimulus

cat fox platypus

I Full posterior representation costly/complex – very
high-dimensional, multi-modal, possibly highly correlated

I But, the brain can nevertheless perform rapid learning
and inference

I Evidence for fast feed-forward processing and recurrent
processing

Introduction - Motivation

Questions:
I Can we find rich representation of the posterior for very

high-dimensional spaces?
I This goal believed to be shared by the brain, can find a

biologically plausible solution reaching it?

Goals:
I Want: method to combine feed-forward processing and

recurrent stages of processing
I Idea: formulate these 2 ideas as approximations to exact

inference in a probabalistic framework

The Setting
I Probabalistic generative model with

latent causes/obj ~s = (s1, . . . , sH) for

sensory data ~y = (y1, . . . , yD),

H

and parameters Θ:

p(~y |Θ) =
∑
~s

p(~y |~s,Θ) p(~s |Θ)

I Optimization problem: given data set Y = {~y1, . . . ,~yN}
find maximum likelihood parameters Θ∗:

Θ∗ = argmax
Θ

p(Y |Θ)

using expectation maximization (EM).

The Setting - Expectation Maximization (EM)

Maximize objective function L(Θ) = log p(Y |Θ) w.r.t. Θ by
optimizing a lower bound, the free-energy,

L(Θ) ≥ F(Θ, q) =
∑

s
q(~s|Θ) log p(~y,~s|Θ)

p(~s|Θ)
= 〈log p(~y,~s)〉q(~s|Θ) + H[q(~s)]

...using EM: iteratively optimize F(Θ, q),
E-step: estimate posterior distribution q, parameters fixed

argmax
q(~s|Θ)

F(Θ, q)→ qn(~s|Θ) := p(~s(n)|~y(n),Θ)

M-step: estimate model parameters, q fixed
argmax

Θ
F(Θ, q)→ Θ := argmax

Θ
〈log p(~y,~s)〉q(~s|Θ)

The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize F(Θ, q):

Task: cluster data into 2 classes/Gaussians → Initialize parameters
randomly before iterating E- and M-steps

The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize F(Θ, q):

Iteration 1:
E-step: estimate posterior distribution q, parameters fixed

argmax
q(~s|Θ)

F(Θ, q)→ qn(~s|Θ) := p(~s(n)|~y(n),Θ)

The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize F(Θ, q):

Iteration 1:
M-step: estimate model parameters, q fixed

argmax
Θ

F(Θ, q)→ Θ := argmax
Θ
〈log p(~y,~s)〉q(~s|Θ)

The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize F(Θ, q):

Iteration 5:
E-step: estimate posterior distribution q, parameters fixed

argmax
q(~s|Θ)

F(Θ, q)→ qn(~s|Θ) := p(~s(n)|~y(n),Θ)

M-step: estimate model parameters, q fixed
argmax

Θ
F(Θ, q)→ Θ := argmax

Θ
〈log p(~y,~s)〉q(~s|Θ)

The Setting - Costly bit of EM

I M-step usually involves a small number of expected
values w.r.t. the posterior distribution:

〈g(~s)〉p(~s |~y (n),Θ) = ∑
~s p(~s |~y (n),Θ) g(~s)

where g(~s) e.g. elementary function of hidden variables
– g(~s) = ~s or g(~s) = ~s~sT for standard sparse coding

I Computation of expectations is usually the
computationally demanding part

Approach: Select and Sample

Method of attack: approximate expectation values in 2 ways

I 1. Selection ≈ feed-forward processing: Restrict approximate
posterior to pre-selected states:

I 2. Sampling ≈ recurrent processing: approximate expectations
using samples from the posterior distribution in a Monte Carlo
estimate of expectations

Approach: Select and Sample

I 1. Selection ≈ feed-fwd: Restrict approximate posterior to pre-selected states:

p(~s |~y (n),Θ) ≈ qn(~s; Θ) =
p(~s |~y (n),Θ)∑

~s ′∈Kn
p(~s ′ |~y (n),Θ)

δ(~s ∈ Kn)

I Choose set Kn w/ selection function Sh(~y,Θ); efficiently selects candidates sh
with most posterior mass:

X

I Efficiently compute expectations in O(|Kn |):

〈g(~s)〉p(~s |~y (n),Θ) ≈ 〈g(~s)〉qn(~s;Θ) =

∑
~s∈Kn

p(~s,~y (n) |Θ) g(~s)∑
~s ′∈Kn

p(~s ′,~y (n) |Θ)

Approach: Select and Sample

Method of attack: approximate expectation values in 2 ways
I 2. Sampling ≈ recurrent processing: approximate expectations using samples

from the posterior distribution in a Monte Carlo estimate:

〈g(~s)〉p(~s |~y (n),Θ) ≈
1
M
∑M

m=1 g(~s(m))

with ~s(m) ∼ p(~s |~y,Θ)

I Obtaining samples from true posterior often difficult

Approach: Select and Sample

Method of attack: approximate expectation values in 2 ways
I Combine Selection + Sampling: approx. using samples from the truncated

distribution:
〈g(~s)〉p(~s |~y (n),Θ) ≈

1
M
∑M

m=1 g(~s(m))

with ~s(m) ∼ qn(~s; Θ)

I Subspace Kn is small, allowing MCMC algorithms to operate more efficiently,
i.e. shorter burn-in times, reduced number of required samples

Example application - Binary sparse coding

Apply select and sample - sparse coding model with binary latents:

p(~s|π) =
H∏

h=1
πsh
(
1− π

)1−sh

p(~y|~s,W , σ) = N (~y; W~s, σ2I)

~y ∈ RD observed variables π prior parameter
~s ∈ {0, 1}H hidden variables σ noise level
W ∈ RD×H dictionary

p(~y |Θ) =
∑

s
N (~y; W~s, σ2I)

H∏
h=1

πsh
(
1− π

)1−sh

Selection function: cosine similarity - take H ′ highest scored sh with:

Sh(~y (n)) =
~W T

h ~y (n)

‖ ~Wh‖

Example application - Binary sparse coding

I Inference: selection + Gibbs sampling; selection posterior
equivalent to full post. with only selected dims

p(sh = 1 |~s\h,~y) = p(sh = 1,~s\h,~y)β

p(sh = 0,~s\h,~y)β + p(sh = 1,~s\h,~y)β

I Complexity of E-step (all 4 BSC cases):

O
(
NS(D︸︷︷︸

p(~s,~y)

+ 1︸︷︷︸
〈~s〉

+ H︸︷︷︸
〈~s~sT 〉

)
)

where S is # of evaluated hidden states

Experiments - 1. Artificial data

I Goal: observe convergence behavior; sanity check for our
method with ground-truth

I Data: N = 2000 bars data consisting of D = 6× 6 = 36
pixels with H = 12 bars: ~y(n) Wh

I Experiments: binary sparse coding with:
(1) exact inference, (2) selection alone,
(3) sampling alone, (4) selection + sampling

Experiments - 1. Artificial data

Convergence behavior of 4 methods

1 50EM step

BSCexact BSCselect

BSCsample BSCs+s

1 50EM step

1 50EM step 1 50EM step

L
(θ

)
L

(θ
) Wh

I Shown: dotted line / L(θground−truth), dictionary elements Wh, and
log-likelihood for multiple runs over 50 EM steps for all 4 methods

→ select and sample extracts GT parameters; likelihood converges

Experiments - 2. Natural image patches

I Goals: [1] detirmine reasonable # of samples,
performance of select and sample for H ′ range

[2] compare # states each method must evaluate
I Data: N = 40, 000 image patches with

D = 26× 26 = 676 pixels, with H = 800 hidden
dimensions: ~y(n)

I Experiments: binary sparse coding with 12 ≤ H ′ ≤ 36 for
all inference methods:
(1) selection alone, (2) sampling alone,
(3) selection + sampling

Experiments - 2. Natural image patches

Evaluation of select and sample approach

I Shown: end approx. log-likelihood after 100 EM-steps vs. #
samples per data point and # states must evaluate for H ′ = 20

→ 200 samples/hid dimension sufficient: ≤ 1% likelihood increase
→ Select and sample – ×40 faster than sampling

Experiments - 3. Large scale on image patches

I Goals: large scale using # of samples detirmined in exp 2
I Data: N = 500, 000 image patches D = 40× 40 = 1600

pixels, with H = 1600 hidden dimensions and H ′ = 34
~y(n)

I Experiments: binary sparse coding for:
(1) selection alone, (2) sampling alone, and
(3) selection + sampling

Experiments - 3. Large scale on image patches

1600 latent dimensions with sampling-based posterior

B

BSCselect : S = 2H
0

BSCs+s : S = 200× H 0

400
100

1012

34

104

108

#
of

st
at
es

H0

C

L
(Θ
)

of states
100 × H 0

A B
S = 200

C

L
(Θ
)

of states
100 × H 0

A B
S = 200

'

'

'
I Shown: handful of the inferred basis functions Wh and comparison

the of computational complexity for selection and select and sample

→ Select and sample scales linearly with H ′; selection exponentially

Summary

To summer-ize...

I Method scales well to high dimensional data (i.e. H = 1600)
I ...while maintaining sampling-based representation of

posterior
I All model parameters learnable
I Combined approach represents reduced complexity and

increased efficiency

Future/current:

I Generalized sparse coding
- continuous hidden variables
- compare diff inference methods (other variational, samplers)

I Generalized select-and-sample approach
- try with other models

Thanks!

Thanks for your attention! Questions?

Appendix - References

1. J. Fiser, P. Berkes, G. Orban, and M. Lengye. (2010). Statistically optimal
perception and learning: from behavior to neural representations. Trends in
Cog. Sci., 14:119âĂŞ130.

2. W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget. (2006). Bayesian
inference with probabilistic population codes. Nature Neuroscience,
9:1432âĂŞ1438.

3. P. Berkes, G. Orban, M. Lengyel, and J. Fiser. (2011). Spontaneous cortical
activity reveals hallmarks of an optimal internal model of the environment.
Science, 331(6013):83âĂŞ87.

4. P. O. Hoyer and A. Hyvarinen. Interpreting neural response variability as
Monte Carlo sampling from the posterior. In Adv. Neur. Inf. Proc. Syst. 16,
MIT Press, 2003.

5. J. Lücke and J. Eggert. (2010). Expectation Truncation And the Benefits of
Preselection in Training Generative Models. Journal of Machine Learning
Research.

6. B. A. Olshausen, D. J. Field. (1996). Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature 381:607-609.

Appendix - Free-energy for latent variable models

Appendix - Free-energy: E-step

Appendix - EM and neural processing

M-step equations for binary sparse coding:

W new =
(∑N

n=1 ~y(n) 〈~s 〉Tqn

) (∑N
n=1

〈
~s~s T〉

qn

)−1
,

(σ2)new = 1
ND

∑
n

〈 ∣∣∣∣∣∣~y(n) −W ~s
∣∣∣∣∣∣2 〉qn

πnew = 1
N
∑

n
| <~s >qn |, where |~x| = 1

H
∑

h xh.

The EM iterations can be associated with neural processing by the

assumption that neural activity represents the posterior over
hidden variables (E-step), and that synaptic plasticity implements
changes to model parameters (M-step).

Appendix - Select and Sample

I Selection: Restrict approximate posterior to pre-selected states:

p(~s |~y (n),Θ) ≈ qn(~s; Θ) =
p(~s |~y (n),Θ)∑

~s ′∈Kn
p(~s ′ |~y (n),Θ)

δ(~s ∈ Kn) (1)

I Choose set Kn w/ selection function Sh(~y,Θ); efficiently selects candidates sh
with most posterior mass:

Kn = {~s | for all h 6∈ In : sh = 0}

where In contains the H ′ indices h with the highest values of Sh(~y (n),Θ),
most likely contributors

I Can be seen as variational approximation to posterior
I Efficiently computable expectations in O(|Kn |):

〈g(~s)〉p(~s |~y (n),Θ) ≈ 〈g(~s)〉qn(~s;Θ) =

∑
~s∈Kn

p(~s,~y (n) |Θ) g(~s)∑
~s ′∈Kn

p(~s ′,~y (n) |Θ)
(2)

Appendix - Experimental results

Select and sample on 40× 40 image patches

(a) Learned W bases.

(b) Log-likelihood (c) Learned σ2. (d) Learned πH ′.

Figure: Results for BSCs+swhen running on N = 500, 000 image
patches of size D = 40× 40 = 1600. The number of hidden
variables was set to H = 1600 and H ′ was set to 36. All other
parameters were set as described in ??. (a) shows the learned
basis functions ~Wh , (b) shows the approximated log-likelihood
throughout 100 EM steps and and corresponding learned data
noise (c) and sparsity (d).

Just a kitty

	opening stuffs
	Introduction
	Introduction
	Intro - Qs / Goals
	Setting
	Setting
	Setting
	experiments
	Application - BSC
	experiments
	experiments - art data
	Summary
	Suppl mat.

