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Introduction
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cat fox platypus

» Experimental neuroscience evidence: perception
encodes and maintains posterior probability distributions
over possible causes of sensory stimuli

» Most likely stimulus interpretation(s) + associated
uncertainty



Introduction - Motivation

World / Stimulus Representation
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» Full posterior representation costly/complex — very
high-dimensional, multi-modal, possibly highly correlated

» But, the brain can nevertheless perform rapid learning
and inference

» Two main proposals: evidence for fast feed-forward
processing and recurrent processing
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Introduction - Motivation

Questions:

» Can we find a rich representation of the posterior for very
high-dimensional spaces?

» This goal believed to be shared by the brain, can we find
a biologically plausible solution reaching it?
Plan:

» Want: method to combine proposals of feed-forward
processing and recurrent stages of processing

» |dea: formulate these 2 ideas as approximations to exact
inference in a probabalistic framework



The Setting
Probabalistic generative model with
latent causes/obj §= (si,.

.., 8y) for
sensory data § = (i,

.- Yp),
and parameters O:

Optimization problem: given data set Y = {7,
maximum likelihood parameters ©*:

.., g} find

©" = argmax p(Y | O)
e
using expectation maximization (EM).



The Setting - Expectation Maximization (EM)

Maximize objective function £(©) =
optimizing a lower bound, the free-energy,

logp(V|©) w.r.t. © by
L(O) > F(O,q)

Z q(31©) log
<10g p(¥, 3 )>q<§|e> +Hlg(3)]
using EM: iteratively optimize 7 (O, ¢)

q(s1©)

E-step: compute posterior distribution ¢, parameters fixed
argmax F (6, q) = ¢,(3/0) := p(5|7™, ©)

M-step: estimate model parameters, ¢ fixed

argmax JF (0, ¢) — © := argmax(log p(¥, 5)) 4(s10)
©

[m]
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The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize 7 (0O, ¢)
5
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Task: cluster data into 2 classes/Gaussians — Initialize parameters
randomly before iterating E- and M-steps



The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize 7 (O, ¢):
2

0
Iteration 1:

q(s1©)

E-step: compute posterior distribution ¢, parameters fixed
argmax F (0, q) = ¢,(5]0) := p(§|g_j(")7@)

[m]
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The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize 7 (0O, ¢):
2

-2

0
Iteration 1:
M-step: estimate model parameters, ¢ fixed
argglax F(O,q) — 0 := argglax(log (¥, 9)) g(510)
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The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize 7 (0, ¢)
2

g
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Iteration 5:

argmax F(0,9) = ¢.(310) := p(3|7\"™, 0)
q(s

E-step: estimate posterior distribution ¢, parameters fixed
M-step: estimate model parameters, ¢ fixed

argé)nax F(O©,q9) —» 6 := argglax(log p(@',g))q@@)



The Setting - Costly bit of EM

» M-step usually involves a small number of expected
values w.r.t. the posterior distribution:

(9(3) 1500 0) = s p(5]7™,0) g(5)
where ¢(3) e.g. elementary function of hidden variables
- g(3) = g or g(5) = 35T for standard sparse coding

» Computation of expectations is usually the
computationally demanding part



Approac

ect and Sample

MAP estimate

exact EM preselection sampling Seslgcr}]agd
(9(3)=" g(Smax) > pEI7)93)
§

K
S (s ©)g(s)

$eKo

g M
i Zg(g'"))
m=1

1 B
7 2 9E™)
m=1
8™ ~ p(s|y™,0)

§(m)~qn(§;e)
Method of attack: approximate expectations in 2 ways
> 1. Selection = feed-forward processing

> 2. Sampling = recurrent processing



Approach: Select and Sample

MAP estimate

exact EM preselection

am i el
sampling s sg?rtlpigd
(9(3))=" g(Smax) E p(s1¥)9(8)

> an(S: 0)9(3)

’KZ,,
1 M
ng(gm))
$eKn m=1
> 1. Selection ~

m=1
(™~ p(8]7™.0) S ~ gn(8:0)
feed-fwd: Restrict approxmate posterlor to pre-selected states
_pEiMe)
P15, 0) x u(5:0) = :
> w5 1)

S'eky

(3 € Kp)
with most posterior mass

> Choose set K, w/ selection function Sy(%,©); efficiently selects candidates sy,

selected units
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> Efficiently compute expectations in O(|K,,|) (Luecke & Eggert, 2010):
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Approach: Select and Sample

MAP estimate

exact EM preselection sampling seslgtrzrt] agd
(9(3)=" g(Smax) > pEI7)93)
s

3 as 0)9()

2 ,:—,,Zg(?”")
Method of attack: approximate expectations in 2 ways

1 .
2 9E™)
m=1

8™ ~ p(s|7.0)

§m ~ qn(S:©)
> 2. Sampling = recurrent processing: approximate expectations using samples
from the posterior distribution in a Monte Carlo estimate:

(9 s 50 .0) ¥ a7 Domey 93

with ™) ~ p(3] 7, 0)
> Obtaining samples from true posterior often difficult
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Approach: Select and Sample

MAP estimate

exact EM preselection sampling
(9(3) =" g(Smar)

select ﬁnd
sample
M
SrE90E 3 als o) R SECLIN B SPTEL)
§eKn m=1 m=1
8~ p(s| 7™, ) | 8™ ~ ga(s; ©)
Method of attack: approximate expectations in 2 ways
» Combine Selection + Sampling: approx. using samples from the truncated
distribution
- ~ 1 M
<9(3)>p(§| gm.e) ~m Em:l g(g(m

with 5 ~ ¢,(5:©)

> Subspace C,, is small, allowing MCMC algorithms to operate more efficiently,
i.e. shorter burn-in times, reduced number of required samples
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Example application - Binary sparse coding

Apply select and sample - sparse coding model with binary latents:

7€ RP observed variables 7 prior parameter
3€{0,1}¥  hidden variables o noise level
W € RPXH  dictionary

H
p(H10) =Y NG W5 o) [[r (1 —7)' ™"

h=1
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Example application - Binary sparse coding

Selection function: cosine similarity - take H’ highest scored s;, with

.
Sn(i™) = Whay "
[ Wl

Inference with sampling: Gibbs sampler - region either full posterior or
selection-posterior with only C,, selected dimensions:

p(sh =1 | g\ha :l_j) =

p(sh =1, 3:\h7 y)

p(sh =0, g\h7 g) + p(Sh =1, g\ha 37)
Complexity of E-step (all inference cases):

ONS(D, + L+IL)
p(3Y) (8

<

(857)
where S is # of evaluated hidden states (2 for exact case)

[m]
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Experiments - 1. Attificial data

» Goal: observe convergence behavior; sanity check for our
method with ground-truth

» Data: N = 2000 bars data consisting of D =6 x 6 = 36
pixels with H = 12 bars: me W,
EE=Lans AT
HEENEMEE NS
» Experiments: binary sparse coding with:
(1) exact inference ‘ (2) selection alone @
#), (4) selection 4+ sampling

(3) sampling alone
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Experiments - 1. Artificial data

Convergence behavior of 4 methods

~ [ I/

) exac selec
3 BSCeat f BSCeet = EH

TElL

EM'step 501

EMstep 50 TTML

-~ Csamplé V/a BSC$+S — II_ Wh
% J —l =
1 EMstep 50 1 EM step 50 -

> Shown: log-likelihood for multiple runs over 50 EM steps for all 4
methods, dotted line / £(§970und=truth) & dictionary elements W),

— select and sample extracts GT parameters; likelihood converges

Shelton, J. A., Bornschein, J., Sheikh, S., Berkes, P., and J. Luecke. (2011) Select and sample - A model of
efficient neural inference and learning Neural Information Processing Systems (NIPS 2011).
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Experiments - 2. Natural image patches

» Goals: [1] detirmine reasonable # of samples,
performance of select and sample for range of K, size
[2] compare # states each method must evaluate

» Data: N = 40,000 image patches with
D = 26 x 26 = 676 pixels, with H = 800 hidden
dimensions: L

» Experiments: binary sparse coding with 12 < H’ < 36 for
inference methods:
(1) selection alone @ (2) sampling alone

(3) selection + sampling




Experiments - 2. Natural image patches

Evaluation of select and sample approach
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> Shown: end approx. log-likelihood after 100 EM-steps vs. #
samples per data point and # states must evaluate (H’ = 20)

— 200 samples/hid dimension sufficient: < 1% likelihood increase
— Select and sample — x40 faster than sampling

Shelton, J. A., Bornschein, J., Sheikh, S., Berkes, P., and J. Luecke. (2011) Select and sample - A model of
efficient neural inference and learning Neural Information Processing Systems (NIPS 2011).
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Experiments - 3. Large scale on image patches

» Goals: large scale using # of samples detirmined in exp 2

» Data: N = 500,000 image patches D = 40 x 40 = 1600
pixels, with H = 1600 hidden dimensions and H' = 34

» Experiment: binary sparse coding for:
(1) selection + sampling



Experiments - 3. Large scale on image patches

1600 latent dimensions with sampling-based posterior

101 2

Bscselect 'S = 2H'

1S
@

# of states

BSCS**:S = 200

-
QU

B
\.H'h“. 10° 0 H 34 40

> Shown: handful of the inferred basis functions 1, and comparison
the of computational complexity for selection and select and sample

— Select and sample scales linearly with H’; selection exponentially

Shelton, J. A, Bornschein, J., Sheikh, S., Berkes, P., and J. Luecke. (2011) Select and sample - A model of

efficient neural inference and learning Neural Information Processing Systems (NIPS 2011).
[m] = = =
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Summary
To summer-ize...

» Method scales well to high dimensional data (i.e. H = 1600)

» ...while maintaining sampling-based representation of
posterior

» All model parameters learnable

» Combined approach represents reduced complexity and
increased efficiency

Future/current:

» Generalized select-and-sample approach

- try in other contexts with other models (i.e. need new
selection function)




Thanks for your attention! Questions?

Um, yes=lihaveia question)
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Appendlx - Free-energy for latent variable models

Observed data X = {x;}; Latent variables )V = {y; }; Parameters ¢

Goal: Maximize the log likelihood (i.e. ML learning) wrt

£00) = log P(X16) = log [ PV, X10)a.
log likelihood using Jensen’s inequality

Any distribution, ¢()’), over the hidden variables can be used to obtain a lower bound on the

0 =g [a" 250
Now,

PO.XO)
Sy > j o)l =255 dy
f a()log 22 A10)

q(Y)

dy = / Vog P(Y, X|0) dY — f
= ] a(y)
So |

where H|q| is the entropy of ¢())

6).

)log q(Y) dY
log P(Y, X|0) dY + Hlq|

F(q.0) = (log P(Y, X]0)),y) + Hld]



Appendix - Free-energy: E-step

The free energy can be re-written

Fla.0)= ] a()log % dy

- [ ayg PO PR

B . oo PIX0)
- [ q(¥)log P(X|0) dY + f g1 50 dy
= {(8) — KL[g(Y)[|P(¥|X,0)]

The second term is the Kullback-Leibler divergence.

dy

This means that, for fixed ¢, F is bounded above by /, and achieves that bound when
KL[g(Y)[|P(Y|X.8)] = 0.

But KL[g||p] is zero if and only if ¢ = p. So, the E step simply sets

dMY) = P|x, 0% )

and, after an E step, the free energy equals the likelihood.




Appendix = EM and neural processing

M-step equations for binary sparse coding:
new N 2(n T
w = (Z’n:]. y( ) <S>qn

(0.2)new

) (Zal (357),)
_LZ<Hg(n)_ WgH2>
ND — an

1 . 7= L
ST, | where|#] = = 3, o

The EM iterations can be associated with neural processing by the
assumption that neural activity represents the posterior over

hidden variables (E-step), and that synaptic plasticity implements
changes to model parameters (M-step).




Appendix - Select and Sample

MAP estimate  exact EM

oo sanping gt
P~ . e | (& (Kng
(0= glénm) Sosnon |Sawonm| 43 ow

]
- p(EI70.0) 5~ qi5:6)

Selection: Restrict approximate posterior to pre-selected states:
HOR:)
o) = o S -
P31 7™, 0) % gu(5: 0) = 2T ;(ng §(3 € Kn)
Y srexcpG 17, 0)

Ky ={S|forall h ¢ T, : s, =0}

Can be seen as variational approximation to posterior
Efficiently computable expectations in O(|Cy|):

S eer, P(E T 0) g(3)
(93557000 ® 9Dy, 500) = ZG’C“

=] 5

where Z,, contains the H’ indices h with the highest values of Sh(g’j("), 9),
most likely contributors
| 4

—~
N
~

N

1)

Choose set K, w/ selection function Sy, (Y, ©); efficiently selects candidates s,
with most posterior mass:



Appendix - Experimental results

Select and sample on 40 x 40 i

Eyert

mage patches
5 :

‘

e | |
(a) Learned W bases.
R — S
N ; B
(b) Log-likelihood (c) Learned o2.

(d) Learned wH’
[m] = = =
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MATH

I don't even want to know what she's trying to solve
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