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Introduction

World / Stimulus Representation 
   of Stimulus

cat fox platypus

I Experimental neuroscience evidence: perception
encodes and maintains posterior probability distributions
over possible causes of sensory stimuli

I Most likely stimulus interpretation(s) + associated
uncertainty



Introduction - Motivation

World / Stimulus Representation 
   of Stimulus

cat fox platypus

I Full posterior representation costly/complex – very
high-dimensional, multi-modal, possibly highly correlated

I But, the brain can nevertheless perform rapid learning
and inference

I Two main proposals: evidence for fast feed-forward
processing and recurrent processing



Introduction - Motivation

Questions:
I Can we find a rich representation of the posterior for very

high-dimensional spaces?
I This goal believed to be shared by the brain, can we find

a biologically plausible solution reaching it?

Plan:
I Want: method to combine proposals of feed-forward

processing and recurrent stages of processing
I Idea: formulate these 2 ideas as approximations to exact

inference in a probabalistic framework



The Setting
Probabalistic generative model with
latent causes/obj ~s = (s1, . . . , sH ) for

sensory data ~y = (y1, . . . , yD),

H

and parameters Θ:

p(~y |Θ) =
∑
~s

p(~y |~s,Θ) p(~s |Θ)

Optimization problem: given data set Y = {~y1, . . . ,~yN} find
maximum likelihood parameters Θ∗:

Θ∗ = argmax
Θ

p(Y |Θ)

using expectation maximization (EM).



The Setting - Expectation Maximization (EM)

Maximize objective function L(Θ) = log p(Y |Θ) w.r.t. Θ by
optimizing a lower bound, the free-energy,

L(Θ) ≥ F(Θ, q) =
∑

s
q(~s|Θ) log p(~y,~s|Θ)

p(~s|Θ)
= 〈log p(~y,~s)〉q(~s|Θ) + H[q(~s)]

...using EM: iteratively optimize F(Θ, q),
E-step: compute posterior distribution q, parameters fixed

argmax
q(~s|Θ)

F(Θ, q)→ qn(~s|Θ) := p(~s|~y(n),Θ)

M-step: estimate model parameters, q fixed
argmax

Θ
F(Θ, q)→ Θ := argmax

Θ
〈log p(~y,~s)〉q(~s|Θ)



The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize F(Θ, q):

Task: cluster data into 2 classes/Gaussians → Initialize parameters
randomly before iterating E- and M-steps



The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize F(Θ, q):

Iteration 1:
E-step: compute posterior distribution q, parameters fixed

argmax
q(~s|Θ)

F(Θ, q)→ qn(~s|Θ) := p(~s|~y(n),Θ)



The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize F(Θ, q):

Iteration 1:
M-step: estimate model parameters, q fixed

argmax
Θ

F(Θ, q)→ Θ := argmax
Θ
〈log p(~y,~s)〉q(~s|Θ)



The Setting - EM example

Mixture of Gaussians: using EM iteratively optimize F(Θ, q):

Iteration 5:
E-step: estimate posterior distribution q, parameters fixed

argmax
q(~s|Θ)

F(Θ, q)→ qn(~s|Θ) := p(~s|~y(n),Θ)

M-step: estimate model parameters, q fixed
argmax

Θ
F(Θ, q)→ Θ := argmax

Θ
〈log p(~y,~s)〉q(~s|Θ)



The Setting - Costly bit of EM

I M-step usually involves a small number of expected
values w.r.t. the posterior distribution:

〈g(~s)〉p(~s |~y (n),Θ) = ∑
~s p(~s |~y (n),Θ) g(~s)

where g(~s) e.g. elementary function of hidden variables
– g(~s) = ~s or g(~s) = ~s~sT for standard sparse coding

I Computation of expectations is usually the
computationally demanding part



Approach: Select and Sample

Method of attack: approximate expectations in 2 ways

I 1. Selection ≈ feed-forward processing

I 2. Sampling ≈ recurrent processing



Approach: Select and Sample

I 1. Selection ≈ feed-fwd: Restrict approximate posterior to pre-selected states:

p(~s |~y (n),Θ) ≈ qn(~s; Θ) =
p(~s,~y (n) |Θ)∑

~s ′∈Kn

p(~s ′,~y (n) |Θ)
δ(~s ∈ Kn)

I Choose set Kn w/ selection function Sh(~y,Θ); efficiently selects candidates sh
with most posterior mass:

X

I Efficiently compute expectations in O(|Kn |) (Luecke & Eggert, 2010):

〈g(~s)〉p(~s |~y (n),Θ) ≈ 〈g(~s)〉qn(~s;Θ) =
∑

~s∈Kn

p(~s,~y (n) |Θ)∑
~s ′∈Kn

p(~s ′,~y (n) |Θ)
g(~s)



Approach: Select and Sample

Method of attack: approximate expectations in 2 ways
I 2. Sampling ≈ recurrent processing: approximate expectations using samples

from the posterior distribution in a Monte Carlo estimate:

〈g(~s)〉p(~s |~y (n),Θ) ≈
1
M
∑M

m=1 g(~s(m))

with ~s(m) ∼ p(~s |~y,Θ)

I Obtaining samples from true posterior often difficult



Approach: Select and Sample

Method of attack: approximate expectations in 2 ways
I Combine Selection + Sampling: approx. using samples from the truncated

distribution:
〈g(~s)〉p(~s |~y (n),Θ) ≈

1
M
∑M

m=1 g(~s(m))

with ~s(m) ∼ qn(~s; Θ)

I Subspace Kn is small, allowing MCMC algorithms to operate more efficiently,
i.e. shorter burn-in times, reduced number of required samples



Example application - Binary sparse coding

Apply select and sample - sparse coding model with binary latents:

p(~s|π) =
H∏

h=1
πsh
(
1− π

)1−sh

p(~y|~s,W , σ) = N (~y; W~s, σ2I )

~y ∈ RD observed variables π prior parameter
~s ∈ {0, 1}H hidden variables σ noise level
W ∈ RD×H dictionary

p(~y |Θ) =
∑

s
N (~y; W~s, σ2I )

H∏
h=1

πsh
(
1− π

)1−sh



Example application - Binary sparse coding

Selection function: cosine similarity - take H ′ highest scored sh with:

Sh(~y (n)) =
~W T

h ~y (n)

‖ ~Wh‖

Inference with sampling: Gibbs sampler - region either full posterior or
selection-posterior with only Kn selected dimensions:

p(sh = 1 |~s\h,~y) =
p(sh = 1,~s\h,~y)

p(sh = 0,~s\h,~y) + p(sh = 1,~s\h,~y)

Complexity of E-step (all inference cases):

O
(
NS( D︸︷︷︸

p(~s,~y)

+ 1︸︷︷︸
〈~s〉

+ H︸︷︷︸
〈~s~sT 〉

)
)

where S is # of evaluated hidden states (2H for exact case)



Experiments - 1. Artificial data

I Goal: observe convergence behavior; sanity check for our
method with ground-truth

I Data: N = 2000 bars data consisting of D = 6× 6 = 36
pixels with H = 12 bars: ~y(n) Wh

I Experiments: binary sparse coding with:
(1) exact inference , (2) selection alone ,
(3) sampling alone , (4) selection + sampling



Experiments - 1. Artificial data

Convergence behavior of 4 methods

1 50EM step

BSCexact BSCselect

BSCsample BSCs+s

1 50EM step

1 50EM step 1 50EM step

L
(θ

)
L

(θ
) Wh

I Shown: log-likelihood for multiple runs over 50 EM steps for all 4
methods, dotted line / L(θground−truth), & dictionary elements Wh

→ select and sample extracts GT parameters; likelihood converges
Shelton, J. A., Bornschein, J., Sheikh, S., Berkes, P., and J. Luecke. (2011) Select and sample - A model of
efficient neural inference and learning Neural Information Processing Systems (NIPS 2011).



Experiments - 2. Natural image patches

I Goals: [1] detirmine reasonable # of samples,
performance of select and sample for range of Kn size

[2] compare # states each method must evaluate
I Data: N = 40, 000 image patches with

D = 26× 26 = 676 pixels, with H = 800 hidden
dimensions: ~y(n)

I Experiments: binary sparse coding with 12 ≤ H ′ ≤ 36 for
inference methods:
(1) selection alone , (2) sampling alone ,
(3) selection + sampling



Experiments - 2. Natural image patches

Evaluation of select and sample approach

I Shown: end approx. log-likelihood after 100 EM-steps vs. #
samples per data point and # states must evaluate (H ′ = 20)

→ 200 samples/hid dimension sufficient: ≤ 1% likelihood increase
→ Select and sample – ×40 faster than sampling
Shelton, J. A., Bornschein, J., Sheikh, S., Berkes, P., and J. Luecke. (2011) Select and sample - A model of
efficient neural inference and learning Neural Information Processing Systems (NIPS 2011).



Experiments - 3. Large scale on image patches

I Goals: large scale using # of samples detirmined in exp 2

I Data: N = 500, 000 image patches D = 40× 40 = 1600
pixels, with H = 1600 hidden dimensions and H ′ = 34

~y(n)

I Experiment: binary sparse coding for:
(1) selection + sampling



Experiments - 3. Large scale on image patches

1600 latent dimensions with sampling-based posterior

B

BSCselect : S = 2H
0

BSCs+s : S = 200× H 0

400
100

1012
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104

108

#
of

st
at
es

H0

C

L
(Θ
)

# of states
100 × H 0

A B
S = 200

C

L
(Θ
)

# of states
100 × H 0

A B
S = 200

'

'

'
I Shown: handful of the inferred basis functions Wh and comparison

the of computational complexity for selection and select and sample

→ Select and sample scales linearly with H ′; selection exponentially
Shelton, J. A., Bornschein, J., Sheikh, S., Berkes, P., and J. Luecke. (2011) Select and sample - A model of
efficient neural inference and learning Neural Information Processing Systems (NIPS 2011).



Summary

To summer-ize...

I Method scales well to high dimensional data (i.e. H = 1600)
I ...while maintaining sampling-based representation of

posterior
I All model parameters learnable
I Combined approach represents reduced complexity and

increased efficiency

Future/current:

I Generalized select-and-sample approach
- try in other contexts with other models (i.e. need new
selection function)



Thanks!

Thanks for your attention! Questions?
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Appendix - Free-energy for latent variable models



Appendix - Free-energy: E-step



Appendix - EM and neural processing

M-step equations for binary sparse coding:

W new =
(∑N

n=1 ~y(n) 〈~s 〉Tqn

) (∑N
n=1

〈
~s~s T〉

qn

)−1
,

(σ2)new = 1
ND

∑
n

〈 ∣∣∣∣∣∣~y(n) −W ~s
∣∣∣∣∣∣2 〉qn

πnew = 1
N
∑

n
| <~s >qn |, where |~x| = 1

H
∑

h xh.

The EM iterations can be associated with neural processing by the

assumption that neural activity represents the posterior over
hidden variables (E-step), and that synaptic plasticity implements
changes to model parameters (M-step).



Appendix - Select and Sample

I Selection: Restrict approximate posterior to pre-selected states:

p(~s |~y (n),Θ) ≈ qn(~s; Θ) =
p(~s |~y (n),Θ)∑

~s ′∈Kn
p(~s ′ |~y (n),Θ)

δ(~s ∈ Kn) (1)

I Choose set Kn w/ selection function Sh(~y,Θ); efficiently selects candidates sh
with most posterior mass:

Kn = {~s | for all h 6∈ In : sh = 0}

where In contains the H ′ indices h with the highest values of Sh(~y (n),Θ),
most likely contributors

I Can be seen as variational approximation to posterior
I Efficiently computable expectations in O(|Kn |):

〈g(~s)〉p(~s |~y (n),Θ) ≈ 〈g(~s)〉qn(~s;Θ) =

∑
~s∈Kn

p(~s,~y (n) |Θ) g(~s)∑
~s ′∈Kn

p(~s ′,~y (n) |Θ)
(2)



Appendix - Experimental results

Select and sample on 40× 40 image patches

(a) Learned W bases.

(b) Log-likelihood (c) Learned σ2. (d) Learned πH ′.

Figure: Results for BSCs+swhen running on N = 500, 000 image
patches of size D = 40× 40 = 1600. The number of hidden
variables was set to H = 1600 and H ′ was set to 36. All other
parameters were set as described in ??. (a) shows the learned
basis functions ~Wh , (b) shows the approximated log-likelihood
throughout 100 EM steps and and corresponding learned data
noise (c) and sparsity (d).



Just a kitty
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