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Motivation

e Analyze brain activity in natural, complex setting, to
assess natural processing

e Problems: natural stimuli need expensive labels, fMRI
data recording is constrained (time-limit, high demand)

e Need to make maximal use of all data obtained
— Resting state activity recorded in absence of task,
need no labels and acquisition easier

o : resting state data as an unlabeled data source in
semi-supervised dimensionality reduction of cortical
activity during visual processing tasks

1 Methods and Materials

e fMRI data of five human volunteers (350 time slices per type):
- during viewing of 1 labeled movie and 1 unlabeled movie

- resting state activity between movies

e 1050 time slices of 3D tMRI brain volumes: Siemens 3T TIM scanner,
separated by 3.2 s (TR), spatial resolution of 3x3x3 mm.

e Pre-processed: Statistical Parametric Mapping (SPM) toolbox [6].

e Labels: Continuous labels of 1 movie — mean scores from 5 observers:
Human faces - Color - Human bodies - Language - Motion |7]

2 Semi-supervised Laplacian Regularized Kernel
Canonical Correlation Analysis

e Labeled fMRI data: {x,...,z,}.corresponding labels: {y1,...,yn}.
e Paired data (fMRI with labels): (z1,41), ..., (Tn, Yn)-
e Additional data (unlabeled and resting): & = {x,41,..., %}
o Graph Laplacians [3]: £; = D~3(D — S)D for
(Siz)ij = exp <_H37;—2£Eju2> and diagonal (Dj;;)s; = Z?if‘””(sm)w
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(a) Poor estimate: Labeled data (b) Better estimate: Labeled and additional data
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Semi-Supervised KCCA [4]

¢ Solve (e.g. as generalized eigenproblem):
TK o Ky
max o Rankyyh (1)
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Tikhonov Regularization  Laplacian Regularization

¢ Finds projections that are smooth w.r.t. manifold
structures of X .Y instead of ambient spaces.

3 Results

e Semi-supervised Laplacian regularization with resting state data

e Unlabeled data improvements: Resting state vs. active viewing

Experiment | Labeled | Laplacian | Resting state| Unlabeled

. A X

Experiments: B X X
C X X X
D X X X
E X X X X

Visualization of learned projections (w) for motion, human body, and
language stimuli, following |1,2].

Motion

Positive weight-maps in the motion processing area V5/MT+, and negative weights in the occipital
pole (fovea) of early visual area V1 as in [1].

Human body

Activity involves the object-responsive lateral occipital cortex (LOC) extending dorsally into the
region responsive to human bodies, (EBA) [9].

2 SD 3
The activation (increasing with experiments A, B and C) involves the superior temporal sulcus
(STS) and extends anteriorly to include parts of Wernickes speech processing area.

UNIVERSITY OF

OXFORD

Mean holdout correlations [8] from five-fold cross validation across the
motion, human body, and language features in all experiments.
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— Semi-supervised KCCA using resting state data (Exp C) improves

over KCCA using only labeled data (Exp A).

Conclusions

e Laplacian regularization improves KCCA without
unlabeled data — for fMRI

¢ Resting state data seem to have a similar marginal
distribution to data recorded during a visual processing
task —

¢ Resting state data can be broadly exploited to
of empirical inference in fMRI studies, an
inherently data poor domain
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