Why MCA? Nonlinear sparse coding with spike-and-slab prior for neurally plausible image encoding
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Introduction Inference: Exact Gibbs Sampling with Latent Preselection

m Sparse coding (SC) as realistic model for low-level image statistics/V1 Gibbs Sampling for multimodal posteriors Natural image patches
simple cells could be improved.

m Novel model generalizing SC in 2 ways: é A | ~ log(p(y1 | 1, 811)) . D PEEETAD) (_8'_0 A Compgr:cson W|th In Vivo neural c(i:ata
(1) spike-and-slab prior distribution for component absence/intensity, = | Pi | | | | 2 i A e [ N e ’ |
(2) nonlinear component combination; maximal causes analysis, MCA. ;; B | "~ log(p(yz | Sh 5\n)) exp< E N xp(sh|y, 50 - =kl & e ‘* B fa |
m Challenge: intractable parameter optimization — either (1) or (2) S 72\ @ l+ - " " - = 315 | -
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results in strongly multimodal posteriors

m Plan: Tackle intractabilities with an exact piecewise Gibbs sampling
method combined with preselection of latent dimensions [1, 2]
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m Construct a Markov chain with target density given by conditional posterior:
p(shlSkn, ¥.0) o< p(snl) || p(yalsh Sk, 0)
d=1

Model: Nonlinear Spike-and-slab Sparse Coding

A

generative fields

where distribution factorizes into D + 1 factors: 1 : prior and D : likelihoods
m MCA likelihood of a single data dimension y, is a piecewise function (A & B):
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standard SC B . m Efficient large-scale application: N = 50,000 image patches with
o N Ve T?Z‘{ Watr s}, 0%) = exp(la(sn) if sn < P D = 16 x 16 pixels, H = 500 latents, preselected to subset H' = 20
spike-and-slab SC Sy > e N e . - constant m Model consistency: satisfies necessary condition for true model [5]:
(linear) -\ » & I "W 5 . Y. y -
, Sh, = exp(ry(s fs,> P . L L
Transition points define herj;/(sydW (Z;?egofn)es the m:p'(mdeEI g)a) sle c:f_ d ’\l’ln %an(s y7.0) = P(S|©)
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(non-linear) , r . /I t * O- @ P, — max{ Wiysh} | W a test standard sparse coding fails (see [6] for a discussion).
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= Generative model for sensory data y = (y1, ..., yp) with hidden m Log of p(¥|sk, Sy\s, 0) results in several piecewise functions — left-piece Artificial data
causes/objects s = (sy, ..., S4) and parameters ©: constant and right-piece quadratic — that are easily summed: Ground-truth parameter recovery
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MCA’s maxy, [3, 4] considers all H latents, takes h with max s, W m Prior slab — add its 2nd degree polynomial to all pieces m;(sy) (C)

51

iStri ike-and-s| — ; . .
S distributed as spike-and-slab, sy = bnz = All function segments m;(s,) are 2nd degree polynomials — expressed by C N os noise swarsty | T ororstdev. | |« priormean
p(bp| ©) = B(bp; w) = 7P (1 — 7)1 ' £ f h . [ g D ra=2 | 420 |4 | &3 |
. computing 3 coefficients for each segment m;(sy) of p(Ya|Sh, SH\h, ) (D) i | I R
p(zn|©) = N(zn; ppr, opy) m Construct piecewise cumulative distribution function (CDF): relate each I -2 - I Y o
L] EXpeCtathn ValueS to maX|mlze fOr h and average over n and d: Segment m/(Sh) to the GaUSS|an X eXp(m/(Sh)) |t deflneS (E) "0 EM steps 30 0 EM steps 30 %0 EM steps 0 "% EM steps 39
[, p(8|7\™, ©) 6(h is max) f(s) m Prior spike — introduce a step into the CDF corresponding to s, = 0 (F) _ _ ‘
=) [ p s|y ) (h is max) m Sample s, ~ p(sh|S\n, ¥, 0) by inverse transform sampling from CDF Discussion
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Preselection o - e .
Multimodal posterior: spike-and-slab prior and nonlinear vs. linear — — . _ m First time a model combining modifications (1) and (2) can be trained
point-wise maximum m Variational approximation to posterior with support reduced to IC,, [1, 2]: efficiently while retaining the rich structure of the posteriors.
data likelihood posterior : : o :
p(Ya| S) p(5|¥q) b1 70.0) ~ s 0) - PEITTO) oy m Derived algorithm enables efficient inference of all model parameters.
A s e PE 7. 6) ’ m Optimal prior shows asymmetric and bimodal activity of simple cells.

= Preselection of latent subset K, = {§|¥ h & Z, : s, = 0} with data-driven m Model is consistent; average posterior is approximately equal to prior.

deterministic selection function to find most likely causes sy, of data for Z,: = Model predicts a high percentage of globular receptive fields
Sy ™) = (Vo= g2 / |V alongside Gabor-like fields; similar to proportions observed in vivo.
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