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Introduction

Sparse coding (SC) as realistic model for low-level image statistics/V1
simple cells could be improved.
Novel model generalizing SC in 2 ways:
(1) spike-and-slab prior distribution for component absence/intensity,
(2) nonlinear component combination; maximal causes analysis, MCA.
Challenge: intractable parameter optimization→ either (1) or (2)
results in strongly multimodal posteriors
Plan: Tackle intractabilities with an exact piecewise Gibbs sampling
method combined with preselection of latent dimensions [1,2]

Model: Nonlinear Spike-and-slab Sparse Coding

Generative model for sensory data ~y = (y1, . . . , yD) with hidden
causes/objects ~s = (s1, . . . , sH) and parameters Θ:

p(yd |~s,Θ) = N (yd ; max
h
{shWdh}, σ2)

MCA’s maxh [3,4] considers all H latents, takes h with max shWdh
sh distributed as spike-and-slab, sh = bhzh:

p(bh |Θ) = B(bh; π) = πbh (1− π)1−bh

p(zh |Θ) = N (zh; µpr, σ
2
pr)

Expectation values to maximize for h and average over n and d :

〈f (s)〉∗ =
∑

n

∫
s p(~s|~y (n),Θ) δ(h is max) f (s)∫

s p(~s|~y (n),Θ) δ(h is max)

Multimodal posterior: spike-and-slab prior and nonlinear vs. linear
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Inference: Exact Gibbs Sampling with Latent Preselection

Gibbs Sampling for multimodal posteriors
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Construct a Markov chain with target density given by conditional posterior:

p(sh|~sH\h, ~y , θ) ∝ p(sh|θ)
∏
d=1

p(yd|sh,~sH\h, θ)

where distribution factorizes into D + 1 factors: 1 : prior and D : likelihoods
MCA likelihood of a single data dimension yd is a piecewise function (A & B):

p(yd|sh,~sH\h, θ) = N (yd ; max
h ′
{Wdh ′sh ′}, σ2)

=


N (yd ; max

h ′\h
{Wdh ′sh ′}, σ2)︸ ︷︷ ︸

constant

= exp(ld(sh)) if sh < Pd

N (yd ; Wdhsh, σ
2) = exp(rd(sh)) if sh ≥ Pd

Transition points define where shWdh becomes the maximal cause of yd:

Pd = max
h ′\h
{Wdh ′sh ′} /Wdh

Log of p(~y |sh,~sH\h, θ) results in several piecewise functions – left-piece
constant and right-piece quadratic – that are easily summed:

m(sh) =
∑D

d log p(yd|sh,~sH\h, θ)

Prior slab→ add its 2nd degree polynomial to all pieces mi(sh) (C)
All function segments mi(sh) are 2nd degree polynomials→ expressed by
computing 3 coefficients for each segment mi(sh) of p(yd|sh,~sH\h, θ) (D)
Construct piecewise cumulative distribution function (CDF): relate each
segment mi(sh) to the Gaussian ∝ exp(mi(sh)) it defines (E)
Prior spike→ introduce a step into the CDF corresponding to sh = 0 (F)
Sample sh ∼ p(sh|~s\h , ~y , θ) by inverse transform sampling from CDF

Preselection

Variational approximation to posterior with support reduced to Kn [1,2]:

p(~s |~y (n),Θ) ≈ qn(~s; Θ) =
p(~s |~y (n),Θ)∑

~s ′∈Kn
p(~s ′ |~y (n),Θ)

δ(~s ∈ Kn)

Preselection of latent subset Kn = {~s | ∀ h 6∈ In : sh = 0} with data-driven
deterministic selection function to find most likely causes sh of data for In:

Sh(~y (n)) =
∣∣ ~Wh − ~y (n)

∣∣2
2

/ ∣∣ ~Wh
∣∣
2

Experiments

Natural image patches

Comparison with in vivo neural data
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Efficient large-scale application: N = 50,000 image patches with
D = 16× 16 pixels, H = 500 latents, preselected to subset H ′ = 20
Model consistency: satisfies necessary condition for true model [5]:

lim
N→∞

1
N

∑
n p(~s |~y (n),Θ) = p(~s |Θ),

a test standard sparse coding fails (see [6] for a discussion).

Artificial data

Ground-truth parameter recovery
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Discussion

First time a model combining modifications (1) and (2) can be trained
efficiently while retaining the rich structure of the posteriors.
Derived algorithm enables efficient inference of all model parameters.
Optimal prior shows asymmetric and bimodal activity of simple cells.
Model is consistent; average posterior is approximately equal to prior.
Model predicts a high percentage of globular receptive fields
alongside Gabor-like fields; similar to proportions observed in vivo.
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