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1Frankfurt Institute for Advanced Studies, Germany; 2Volen Center for Complex Systems. Brandeis University, USA

Highlights

Introduction:
Experimental evidence – perception
encodes and maintains posterior
probability distributions over possible
causes of sensory stimuli
Full posterior representation
costly/complex – very
high-dimensional, multi-modal,
possibly highly correlated
But, the brain can nevertheless
perform rapid learning and inference
Evidence for fast feed-forward
processing and recurrent processing

Goals:
[1] Can we find rich representation of the

posterior for very high-dimensional
spaces?

[2] This goal believed to be shared by the
brain, can find a biologically plausible
solution reaching it?
Want: method to combine
feed-forward processing and recurrent
stages of processing
Idea: approximate inference and
learning with good posterior
representation→ use pre-selection of
most relevant latent variables and
sample from this selection

Results:
Experiments on image patches with
H = 1600 hidden dimensions
Method scales well – applicable to
high dimensional data while
maintaining sampling-based
representation of posterior
All model parameters learnable
Combined approach formulates
pre-selection and sampling as
approximations to exact inference in a
probabilistic framework for perception

The Setting

Generative model for sensory data
~y = (y1, . . . , yD) with hidden
causes/objects ~s = (s1, . . . , sH) and
parameters Θ:

p(~y |Θ) =
∑

~s p(~y |~s,Θ) p(~s |Θ)

Given data set Y = {~y1, . . . , ~yN} find
maximum likelihood parameters
Θ∗ = argmaxΘ p(Y |Θ) using EM.
M-step usually involves a small
number of expected values w.r.t. the
posterior distribution:〈
g(~s)

〉
p(~s |~y (n),Θ)

=
∑

~s p(~s |~y (n),Θ) g(~s)

where g(~s) is usually an elementary
function of the hidden variables (e.g.
g(~s) = ~s or g(~s) = ~s~sT for standard
sparse coding)
Computation of expectations is usually
the computationally demanding part

Select and Sample Approach
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~s(m) ∼ p(~s |~y (n),Θ) ~s(m) ∼ qn(~s; Θ)

Kn

Expectation Truncation (ET)

Restrict approximate posterior to pre-selected states

p(~s |~y (n),Θ) ≈ qn(~s; Θ) =
p(~s |~y (n),Θ)∑

~s ′∈Kn
p(~s ′ |~y (n),Θ)

δ(~s ∈ Kn)

Set Kn chosen using a selection function Sh(~y ,Θ);
efficiently selects candidates sh with most posterior
mass:

Kn = {~s | for all h 6∈ In : sh = 0}
where In contains the H ′ indices h with the highest
values of Sh(~y (n),Θ), most likely contributors
Can be seen as variational approximation to posterior
Efficiently computable expectations in O(|Kn|):〈
g(~s)

〉
p(~s |~y (n),Θ)

≈
〈
g(~s)

〉
qn(~s;Θ)

=

∑
~s∈Kn

p(~s, ~y (n) |Θ) g(~s)∑
~s ′∈Kn

p(~s ′, ~y (n) |Θ)

Sampling

Alternative: approximate expectations using samples
from the posterior distribution:

〈g(~s)〉p(~s |~y (n),Θ) ≈ 1
M

∑M
m=1 g(~s(m)) with ~s(m) ∼ p(~s |~y ,Θ)

Obtaining samples from true posterior often difficult
Combining ET & Sampling

Approximate expectations using samples from the
truncated distribution:

〈g(~s)〉qn(~s;Θ) ≈ 1
M

∑M
m=1 g(~s(m)) with ~s(m) ∼ qn(~s; Θ)

Subspace Kn is small, allowing MCMC algorithms to
operate more efficiently, i.e. shorter burn-in times,
reduced number of required samples

Example Application: Binary Sparse Coding

Model: sparse coding with binary latent variables

p(~s|π) =
H∏

h=1

πsh
(
1− π

)1−sh

p(~y |~s,W , σ) = N (~y ; W~s, σ2I)

~y ∈ RD observed variables π prior parameter
~s ∈ {0,1}H hidden variables σ noise level
W ∈ RD×H basis functions

Selection function: cosine similarity

Sh(~y (n)) =
~W T

h ~y
(n)

‖ ~Wh‖
Inference: ET with Gibbs sampling; ET posterior
equivalent to full post. with only selected dims

p(sh = 1 |~s\h, ~y) =
p(sh = 1,~s\h, ~y)β

p(sh = 0,~s\h, ~y)β + p(sh = 1,~s\h, ~y)β

Complexity of E-step (all 4 BSC cases):

O
(
NS( D︸︷︷︸

p(~s,~y)

+ 1︸︷︷︸
〈~s〉

+ H︸︷︷︸
〈~s~sT〉

)
)

where S is # of evaluated hidden states

Experiments

Natural image patches

1600 latent dimensions with sampling-based posterior
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Large-scale application of select and sample (BSCs+s)
to N = 500,000 image patches with H = 1600,
H ′ = 34, D = 40× 40 = 1600 pixels
Shown: data, handful of the inferred basis functions
Wh and comparison the of computational complexity
BSCselect scales exponentially with H ′ whereas
BSCs+s scales linearly. Note the large difference at
H ′ = 34, used in obtaining the W

Evaluation of select and sample approach

Experiments on N = 40,000 image patches with
D = 26× 26, H = 800
Goal: study effect of # samples on performance of
BSCs+sacross entire range of 12 ≤ H ′ ≤ 36 and
comparison of # states to be evaluated for BSCsample,
BSCselect, BSCs+s

Shown: end approximate log-likelihood after 100
EM-steps vs. number of samples per data point and
# states that had to be evaluated for H ′ = 20 for the
different approaches
200 samples per hidden dimension sufficient: drawing
more helps likelihood less than 1%

Select and sample approach is 40 times faster than
sampling

Artificial data

Convergence behavior of 4 methods
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Experiments on artificial N = 2000 bars data with
H = 12, D = 6× 6. Dotted line is L(θground−truth)

Shown: data, basis functions Wh, and log-likelihood for
multiple runs over 50 EM steps for all 4 methods
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