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Abstract

Modelling natural images with sparse coding (SC) has faced two main challenges:
flexibly representing varying pixel intensities and realistically representing low-
level image components. This paper proposes a novel multiple-cause generative
model of low-level image statistics that generalizes the standard SC model in two
crucial points: (1) it uses a spike-and-slab prior distribution for a more realistic
representation of component absence/intensity, and (2) the model uses the highly
nonlinear combination rule of maximal causes analysis (MCA) instead of a lin-
ear combination. The major challenge is parameter optimization because a model
with either (1) or (2) results in strongly multimodal posteriors. We show for the
first time that a model combining both improvements can be trained efficiently
while retaining the rich structure of the posteriors. We design an exact piece-
wise Gibbs sampling method and combine this with a variational method based
on preselection of latent dimensions. This combined training scheme tackles both
analytical and computational intractability and enables application of the model
to a large number of observed and hidden dimensions. Applying the model to
image patches we study the optimal encoding of images by simple cells in V1
and compare the model’s predictions with in vivo neural recordings. In contrast
to standard SC, we find that the optimal prior favors asymmetric and bimodal ac-
tivity of simple cells. Testing our model for consistency we find that the average
posterior is approximately equal to the prior. Furthermore, we find that the model
predicts a high percentage of globular receptive fields alongside Gabor-like fields.
Similarly high percentages are observed in vivo. Our results thus argue in favor
of improvements of the standard sparse coding model for simple cells by using
flexible priors and nonlinear combinations.

1 Introduction

Sparse Coding (SC) is one of the most popular algorithms for feature learning and has become a
standard approach in Machine Learning, Computational Neuroscience, Computer Vision, and other
related fields. It was first introduced as a model for the encoding of visual data in the primary visual
cortex of mammals [1] and became the standard model to describe coding in simple cells. Following
early recording studies [2] on simple cells, they were defined to be cells responding to localized,
oriented and bandpass visual stimuli – sparse coding offered an optimal encoding explanation of
such responses by assuming that visual components are (a) independent, (b) linearly superimposed,
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and (c) mostly inactive, with only a small subset of active components for a given image patch.
More formally, sparse coding assumes that each observation y = (y1, . . . , yD) is associated with a
(continuous or discrete) sparse latent variable s = (s1, . . . , sH), where sparsity implies that most of
the components sh in s are zero or close-to zero. Each data point is generated according to the data
model

p(y |Θ) =

∫
s

p(y | s,Θ) p(s |Θ) ds (1)

with
∫
s

integrating (or summing) over all hidden states and Θ denoting the model parameters. Typ-
ically, p(y | s, Θ) is modelled as a Gaussian with a mean µ defined as µ =

∑
h shWh, i.e. as a

linear superposition of basis vectors Wh ∈ RD. The most typical choice of prior over p(s |Θ) is a
Laplace distribution (which corresponds to L1 regularization).

The sparse coding generative model has remained essentially the same since its introduction, with
most work focusing on efficient inference of optimal model parameters Θ (e.g., [3, 4]), usually ex-
ploiting unimodality of the resulting posterior probabilities. The standard form of the model offers
many mathematically convenient advantages, but the inherent assumptions may not be appropriate
if the goal is to accurately model realistic images. First, it has been pointed out that visual compo-
nents – such as edges – are either present or absent and this is poorly modelled with a Laplace prior
because it lacks exact zeros. Recently, spike-and-slab distributions have been a favored alternative
(e.g. [5, 6, 7, 8]) as they enable the modelling of visual component absence/presence (the spike) as
well as the component’s intensity distribution (the slab). Second, it has been pointed out that image
components do not linearly superimpose to generate images, contrary to the standard sparse coding
assumption. Alternatively, various nonlinear combinations of visual components have been investi-
gated [9, 10, 11, 12]. Either modification (spike-and-slab prior or nonlinearities) leads to multimodal
posteriors, making parameter optimization difficult. As a result these modifications have so far only
been investigated separately. For linear sparse coding with a spike-and-slab prior the challenge for
learning has been overcome by applying factored variational EM approaches [13, 5] or sampling
[6]. Similarly, models with nonlinear superposition of components could be efficiently trained by
applying a truncated variational EM approach [14, 12], but avoiding the analytical intractability
introduced by using a continuous prior distribution.

In this work we propose a sparse coding model that for the first time combines both of these improve-
ments – a spike-and-slab distribution and nonlinear combination of components – in order to form
a more realistic model of images. We address the optimization of our model by using a combined
approximate inference approach with preselection of latents (for truncated variational EM [14]) in
combination with Gibbs sampling [15]. First, we show on artificial data that the method efficiently
and accurately infers all model parameters, including data noise and sparsity. Second, using natu-
ral image patches we show the model yields results consistent with in vivo recordings and that the
model passes a consistency check which standard SC does not. Third, we show our model performs
on par with other models on the functional benchmark tasks of denoising and inpainting.

2 The Generative Model: Nonlinear Spike-and-Slab Sparse Coding

We formulate the multi-causal data generation process as the probabilistic generative model:

p(yd | s,Θ) = N (yd; max
h
{shWdh}, σ2), (2)

where maxh considers all H latent components and takes the h yielding the maximum value for
shWdh, and where sh has a spike-and-slab distribution given by sh = bhzh and parameterized by:

p(bh |Θ) = B(bh;π) = πbh (1− π)1−bh (3)

p(zh |Θ) = N (zh; µpr, σ
2
pr), (4)

in this notation the spike is defined in Eq. 3 (parameterized by π) and the slab is defined in Eq. 4
(parameterized by µpr and σpr). The observation noise has a single parameter; σ. The columns of
the matrix W = (Wdh) are the generative fields, Wh, one associated with each latent variable sh.
We denote the set of all parameters with Θ. We will be interested in working with the posterior over
the latents given by

p(s|y, θ) =
p(y|s, θ) p(s|θ)∫

s′
p(y|s′, θ) p(s′|θ) ds′

. (5)
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Figure 1: Generation according to different sparse coding generative models using the same gen-
erative fields. A 20 generative fields in the form of random straight lines. B Examples of patches
generated according to three generative models all using the fields in A. Top row: standard linear
sparse coding with Laplace prior. Middle row: linear sparse coding with spike-and-slab prior. Bot-
tom row: spike-and-slab sparse coding with max superposition. The latter two use the same prior
parameterization (with positive slab). Generated patches are individually scaled to fill the color
space (with zero fixed to green). C A natural image with two patches highlighted (magnifications
show their preprocessed from). D Linear and nonlinear superposition of two single components for
comparison with the actual superposition in C.

As in standard sparse coding, the model assumes independent latents and given the latent variables,
the observations are distributed according to a Gaussian distribution. Unlike standard sparse coding,
the latent variables are not distributed according to a Laplace prior and the generative fields (or ba-
sis functions) are not combined linearly. Fig. 1 illustrates the model differences between a Laplace
prior and a spike-and-slab prior and the differences between linear and nonlinear superposition. As
can be observed, standard sparse coding results in strong interference when basis functions overlap.
For spike-and-slab sparse coding most components are exactly zero but interference between them
remains strong because of their linear superposition. Combining a spike-and-slab prior with non-
linear composition allows minimal interference between the bases and ensures that latents can be
exactly zero, which creates very multimodal posteriors since data must be explained by either one
cause or another. For comparison, the combination of two real image components is highlighted in
Fig. 1C (lower patch). Linear and nonlinear superposition of two basis functions resembling single
components is shown in Fig. 1D. This suggests that superposition defined by max represents a better
model of occluding components (compare [11, 12]).

In this paper we use expectation maximization (EM) to estimate the model parameters Θ, and we use
sampling after latent preselection [15] to represent the posterior distribution over the latent space.
Optimization in the EM framework entails setting the free-energy to zero and solving for the model
parameters (M-step equations) (e.g., [16]). As an example we obtain the following formula for the
estimate of image noise:

σ̂2 =
1

NDK

∑
n

∑
d

∑
k

(
max
h

{
Whds

k
h

}
− y(n)

d

)2

, (6)

where we average over all N observed data points, D observed dimensions, and K Gibbs samples.
However, this notation is rather unwieldy for a simple underlying idea. As such we will use the
following notation:

σ̂2 =
〈
Wdhsh − y(n)

d

〉∗
, (7)

where we maximize for h and average over n and d. That is, we denote the expectation values 〈 . 〉∗
to mean the following:

〈f(s)〉∗ =
∑
n

∫
s
p(s|y(n),Θ) f(s) δ(h is max) ds∫
s
p(s|y(n),Θ) δ(h is max) ds

, (8)
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Figure 2: Illustration of a H=2-dimensional spike-and-slab prior over latents and the multimodal
posterior distribution induced by this prior for both linear and nonlinear data likelihoods.

where δ is the indicator function denoting the domain to integrate over, namely where h is the
maximum. This allows a condensed expression of the rest of the update equations:

Ŵhd =
〈shyd〉∗

〈s2
d〉∗

, π̂ = 〈δ(s)〉, (9)

µ̂pr = 〈sh〉∗, σ̂2
pr = 〈(sh − µ̂pr)

2〉∗ (10)

where we observe that in order to optimize the parameters we need to calculate several expectation
values with respect to the posterior distribution. As discussed however, the posterior distribution of
a model with a spike-and-slab prior in both the linear and nonlinear cases is strongly multimodal
and such posteriors are difficult to infer and represent. This is illustrated in Fig. 2. Calculating
expectations of this posterior is analytically intractable, thus we use Gibbs sampling to approximate
the expectations.

3 Inference: Exact Gibbs Sampling with Preselection of Latents

In order to efficiently handle the intractabilities posed by our model and the complex posterior
(multimodal, high dimensional) illustrated in Fig. 2, we take a combined approximate inference
approach. Specifically we do exact Gibbs sampling from the posterior after we have preselected the
most relevant set of latent states using a truncated variational form of EM. Preselection is not strictly
necessary, but significantly helps with the computational intractability faced in high dimensions. As
such, we will first descibe the sampling step and preselection only later.

Gibbs Sampling. Our main technical contribution towards efficient inference in this model is an
exact Gibbs sampler for the multimodal posterior. Previous work has used Gibbs sampling in
combination with spike-and-slab models [17], and for increased efficiency in sparse Bayesian in-
ference [18]. Our aim is to construct a Markov chain with the target density given by the conditional
posterior distribution:

p(sh|sH\h,y, θ) ∝ p(sh|θ)
D∏
d=1

p(yd|sh, sH\h, θ). (11)

We see from Eq. 11 that the distribution factorizes into D + 1 factors: a single factor for the prior
and D factors for each likelihood. For the point-wise maximum nonlinear case we are considering,
the likelihood of a single yd is a piecewise function defined as follows:

p(yd|sh, sH\h, θ) = N (yd; max
h′
{Wdh′sh′}, σ2) (12)

=


N (yd; max

h′\h
{Wdh′sh′}, σ2)︸ ︷︷ ︸

constant

= exp(ld(sh)) if sh < Pd

N (yd; Wdhsh, σ
2) = exp(rd(sh)) if sh ≥ Pd,

(13)

where the transition point is defined as the point where shWdh becomes the maximal cause:

Pd = max
h′\h
{Wdh′sh′} /Wdh. (14)
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Figure 3: Illustration of the Gibbs sampler for an MCA-induced posterior. Left column: three
contributing factors for the posterior ∝ p(sh | s\h,y,Θ) in logspace. A and B: Log likelihood
functions each defined by a transition point Pd and left and right pieces rd(sh) and ld(sh). C Log
prior, which consists of an overall gaussian and the Dirac-peak at sh = 0. D Log posterior, the sum
of functions A, B, and C consists of D + 1 pieces plus the Dirac-peak at sh = 0. E Exponentiation
of the D log posterior. F CDF for sh from which we do inverse transform sampling.

We refer to the two pieces of yd in Eq. 13 as the left piece of the function when sh < Pd and right
piece when sh ≥ Pd. The left is constant w.r.t. sh because the data is explained by another cause
when sh < Pd, and the right is a truncated Gaussian when considered a PDF of sh (see Fig. 3A).

We take the logarithm of p(yd|sh, sH\h, θ), which transforms the equation into a left-piece constant
and right-piece quadratic function that we can easily sum together. The sum of these D functions
results in one function with D + 1 segments mi(sh), with transition points Pd given by the indi-
vidual functions. We first sort the functions according to their transition points, denoted here by
δ = argsortd(Pd), such that we can efficiently calculate the summation over these functions:

mi(sh) =
∑i−1
j=1 rδ(j)(sh) +

∑D
u=i lδ(u)(sh) for 1 ≤ i ≤ D + 1, (15)

where the left and right pieces are referred to as li(sh) and ri(sh) (as in Eq. 13), respectively. Since
all pieces li(sh) and ri(sh) are polynomials of 2nd degree, the result is still a 2nd degree polynomial.
We incoorporate the prior in two steps. The Gaussian slab of the prior is taken into account by
adding its 2nd degree polynomial to all the pieces mi(sh), which also ensures that every piece is a
Gaussian.

To construct the piecewise cumulative distribution function (CDF), we relate each segment mi(sh)
to the Gaussian ∝ exp(mi(sh)) it defines. Next, the Bernoulli component of the prior is accounted
for by introducing the appropriate step into the CDF at sh = 0 (see Fig. 3F). Once the CDF is con-
structed, we simulate each sh from the exact conditional distribution (sh ∼ p(sh|s\h = s\h ,y, θ))
by inverse transform sampling. Fig. 3 illustrates the entire process.

Preselection. To reduce the computational load of inference in our model, we can optionally pre-
select the most relevant latent variables before doing Gibbs sampling. This can be formulated as a
variational approximation to exact inference [14] where the posterior distribution p(s |y (n),Θ) is
approximated by the distribution qn(s; Θ) which only has support on a subset Kn of the latent state
space:

p(s |y (n),Θ) ≈ qn(s; Θ) =
p(s |y (n),Θ)∫

s ′∈Kn
p(s ′ |y (n),Θ)

δ(s ∈ Kn) (16)

where δ(s ∈ Kn) = 1 if s ∈ Kn and zero otherwise. The subsets Kn are chosen in a data-driven
way using a deterministic selection function, they vary per data point y (n), and should contain most
of the probability mass p(s |y) while also being significantly smaller than the entire latent space.
Using such subsets Kn, Eqn. 16 results in good approximations to the posteriors. We define Kn as
Kn = {s | for all h 6∈ I : sh = 0} where I contains the indices of the latents estimated to be most
relevant for y (n). To obtain these latent indices we use a selection function of the form:

Sh(y (n)) =
∣∣Wh − y (n)

∣∣2
2

/ ∣∣Wh

∣∣
2

(17)

to select the H ′ < H highest scoring latents for I. This boils down to selecting the H ′ dictionary
elements that are most similar to each datapoint, hence being most likely to have generated the
datapoint. We then sample from this reduced latent set.
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Figure 4: Results of 10 experimental runs with 30 EM iterations on the same artificial ground-truth
data generated according to the model. We accurately recover ground-truth parameters which are
plotted with dotted lines. A Random selection of data y(n), B The set of learned generative fields
Wh, C Data noise σ, D Sparsity H × π, E Prior standard dev. σpr, F Prior mean µpr.

4 Experiments

We first investigate the performance of our algorithm on ground-truth artificial data. Second, we
apply our model to natural image patches and compare with in vivo recording from various sources.
Third, we investigate the applicability of our algorithm on functional benchmark tasks. All ex-
periments were performed using a parallel implementation of the EM algorithm [19]. Small scale
experiments were run on a single multicore machine, while larger scale experiments were typically
run on a cluster with 320 CPU cores in parallel.

For all experiments described, 1/3 of the samples drawn are used for burn-in, and 2/3 are the samples
used for computations. We initialize our parameters by setting the σpr and σ equal to the standard
deviation observed in the data, the prior mean µpr is initialized to the observed data mean. W is
initialized at the observed data mean with additive Gaussian noise of the σ observed in the data, but
we enforce the constraint that 〈Wdh〉 = 1 such that ∀h∈H

∑D
d=1Wdh = D, or that each Wdh is

approximately equal to one.

Artificial Data. The goal of the first set of experiments is to verify that our model and inference
method produce an algorithm that can (1) recover ground-truth parameters from data that is gen-
erated according to the model and (2) that it reliably converges to locally optimal solutions. We
generate ground-truth data with N = 2, 000 consisting of D = 5 × 5 = 25 observed and H = 10
hidden dimensions according to our model: N images with overlapping ‘bars’ of varying intensities
and with Gaussian observation noise of variance σgt = 2 (Fig. 4A). On average, each data point
contains two bars, π = 2

H . Results (Fig. 4B-F) show that our algorithm converges to globally opti-
mal solutions and recovers the generating ground-truth parameters. Here we drew 30 samples from
the posterior and set H ′ = H , but investigation of a range of sample number and H ′ values yields
the same results, suggesting that our approximation parameters do not have an effect on our results
(see Supp. Material for more experiments on this dataset).

Natural Image Patches. We applied our model to N = 50, 000 image patches of 16 × 16 pixels.
The patches were extracted from the Van Hateren natural image database [20] and subsequently
preprocessed using pseudo-whitening [1]. We split the image patches into a positive and negative
channel to ensure yd ≥ 0: each image patch ỹ of size D̃ = 16 × 16 is converted into a datapoint
of size D = 2 D̃ by assigning yd = [ỹd]

+ and yD̃+d = [−ỹd]+, where [x]+ = x for x > 0 and
[x]+ = 0 otherwise. This can be motivated by the transfer of visual information by center-on and
center-off cells of the mammalian lateral geniculate nucleus (LGN). In a final step, as a form of local
contrast normalization, we scaled each image patch so that 0 ≤ yd ≤ 10.

After 50 EM iterations with 100 samples per datapoint the model parameters had converged and
the learned dictionary elements Wh represent a variety of Gabor-Wavelet and Difference of Gaus-
sians (DoG) like shapes (see Fig. 5A). We observe a mean activation of µpr = 0.47, with standard
deviation σpr = 0.13, i.e., we infer a strongly bimodal prior (Fig. 5D). The final sparseness was
πH = 6.2, which means that an average of roughly six latent variables were active in every image
patch. The inferred observation noise was σ = 1.4. To quantitatively interpret the learned fields, we
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Figure 5: Results after training our model on N = 50, 000 image patches of size 16 × 16 using
H=500 latent units. A Selection of inferred dictionary elements Wh. The full set of elements
is shown in the supplementary material. B After fitting with Gabor wavelets and DoG’s, 135 fields
(27%) are classified as being globular. The fraction of globular fields measured in vivo are shown for
comparison. C nx/ny Gabor statistics plot of estimated receptive fields (blue circles, see Supp. D
Fig.D) overlayed with the distribution reported by Ringach (in vivo Macaque, red triangles). We
intentionally exclude fields best fit by DoG’s, removing the typical cluster observed at 0-0 (see
Supp. D). D Visualization of the prior inferred by our model: On average πH = 6.2 dictionary
elements are active per datapoint. E Histogram of the actual activation of three selected dictionary
elements: A Gabor wavelet, a DoG and a field encoding low-frequency input. The bimodal pattern
closely resembles the prior activation inferred in D.

perform reverse correlation on the learned generative fields and fit the resulting estimated receptive
fields with Gabor wavelets and DoGs (see Supp. D for details). Next, we classify the fields as either
orientation-sensitive Gabor wavelets or ‘globular’ fields best matched by DoGs. In Fig. 5C) we then
plot only the fields classified as Gabors, leaving out all DoG fields.

Notably, the proportion of globular fields predicted by the model (Fig. 5B) is similarly high as those
found in different species [21, 22, 23] (see next section for a discussion). Fig. 5D-E compares the
optimal prior distribution with the average posterior distribution for several latent variables (with
their associated generative fields shown in insets). It is a necessary condition of the correct model of
the data that the posterior averaged over the datapoints y(n) matches the prior, since the following
holds (compare, e.g., [24]):

lim
N→∞

1
N

∑
n p(s |y(n),Θ) = p(s |Θ). (18)

Our model satisfies this condition; the average posterior over these fields closely resembles the
optimal prior, which is a test standard sparse coding fails (see [17] for a discussion).

Functional Tasks. We also apply our model to the task of image inpainting and image denoising.
Given that we propose our model to be able to realistically model low-level image statistics, we
expect it to perform well on these tasks. Results show that our algorithm performs on par with the
latest benchmarks obtained by other algorithms. See Supp. Material for details and examples.

5 Discussion

In this work, we defined and studied a sparse coding model that, for the first time, combines a spike-
and-slab prior with a nonlinear combination of dictionary elements. To address the optimization of
our model, we designed an exact piecewise Gibbs sampling method combined with a variational
method based on preselection of latent dimensions. This combined training scheme tackles both
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analytical and computational intractability and enables application of the model to a large number of
observed and hidden dimensions. The learning algorithm derived for the model enables the efficient
inference of all model parameters including sparsity and prior parameters.

The spike-and-slab prior used in this study can parameterize prior distributions which are symmetric
and unimodal (spike on top of the Guassian) as well as strongly bimodal distributions with the Gaus-
sian mean being significantly different from zero. However, inferring the correct prior distribution
requires sophisticated inference and learning schemes. Standard sparse coding with MAP-based ap-
proximation only optimizes the basis functions [25, 4]. Namely, the prior shape remains fixed except
for its weighting factor (the regularization parameter) which is typically only inferred indirectly (if at
all) using cross-validation. Very few sparse coding approaches infer prior parameters directly. One
example is an approach using a mixture-of-Gaussians (MoG) prior [17] which applies Gibbs sam-
pling for inference. The MoG prior can model multimodality but in numerical experiments on image
patches the mixture components were observed to converge to a monomodal prior – which may be
caused by the assumed linear superposition or by the Gibbs sampler not mixing sufficiently. When
the MoG prior was fixed to be trimodal, no instructive generative fields were observed [17]. Another
example of sparse coding with prior inference is a more recent approach which uses a parameterized
student-t distribution as prior and applies sampling to infer the sparsity [26]. A student-t distribution
cannot model multimodality, however. The work in [27] uses a trimodal prior for image patches but
shape and sparsity remain fixed, i.e. the study does not answer how optimal such a prior may be. In
contrast, we have shown in this study that the prior shape and sparsity level can be inferred from im-
age data. The resulting prior is strongly bimodal and control experiments confirm a high consistency
of the prior with the average posterior (Fig. 5D-E). Standard sparse coding approaches typically fail
in such controls which may be taken as early evidence for bimodal or multimodal priors being more
optimal (see [17]).

Together with a bimodal prior, our model infers Gabor and difference-of-Gaussian (DoG) functions
as the optimal basis functions for the used image patches. While Gabors are the standard outcome
of sparse coding, DoGs have not been predicted by sparse coding until very recently. Indeed, DoG
or ‘globular’ fields were identified as the main qualitative difference between experimental mea-
surements of V1 simple cells and theoretical predictions [21]. A number of studies have since
shown that globular fields can emerge in applications of computational models to image patches
[28, 27, 29, 30, 31, 12, 32]. One study [29] has shown that globular fields can be obtained with stan-
dard sparse coding by choosing specific values for overcompleteness and sparsity (i.e. prior shape
and sparsity are not inferred from data). The studies [27, 31, 32] assume a restricted set of values for
latent variables and yield relatively high proportion of globular fields suggesting that the emergence
of globular fields is due to hard constraints on the latents. On the other hand, the studies [28, 30, 12]
suggest that globular fields are a consequence of occlusion nonlinearities. Our study argues in favor
of the occlusion interpretation for the emergence of globular fields because the model studied here
shows that high percentages of globular fields emerge with a prior that is (a) inferred from data and
(b) allows for a continuous distribution of latent values.

In summary, the main results obtained by applying the novel model to preprocessed images are:
(1) the observation that a bimodal prior is preferred over a unimodal one for optimal image coding,
and (2) that high percentages of globular fields are predicted. The sparse bimodal prior is consistent
with sparse and positive neural activtiy for the encoding of image components in V1, and the high
percentage of globular fields is consistent with recent in vivo recordings of simple cells. Our model
therefore links improvements on optimal image encoding to a high consistency with neural data.
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[30] J. Lücke. Receptive field self-organization in a model of the fine-structure in V1 cortical columns. Neural

Computation, 21(10):2805–45, 2009.
[31] M. Henniges, G. Puertas, J. Bornschein, J. Eggert, and J. Lücke. Binary Sparse Coding. In Proceedings
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Supplementary Material

A M-Step Equation Derivations

The optimal parameters that maximize the data log-likelihood under the generative model can be
sought by Expectation Maximization (EM) algorithm (see eg., [16]), which iteratively optimizes a
lower bound F(Θ, q) of the likelihood w.r.t. the parameters Θ and a distribution q:

L(Θ) ≥ F(Θ, qΘ′) =

N∑
n=1

∑
s

qn(s|Θ′) log
p(y(n), s|Θ)

qn(s|Θ′)
(19)

= 〈log p(y, s |Θ)〉q(s|Θ′) + H[q(s|Θ′)]. (20)
Each iteration consists of an E-step and an M-step. The E-step optimizes the lower bound w.r.t. to the
distributions qn(s |Θ) by setting them equal to the posterior distributions qn(s |Θ)← p(s | y(n),Θ)
while keeping the parameters Θ fixed, denoted by Θ′. The M-step then optimizes F(Θ, qΘ′) w.r.t.
the parameters Θ keeping the distributions qn(s |Θ′) fixed. If we are given many samples of s for
the posterior then we wish to find:

Θ(t+1) = argmaxΘF(Θ, qΘ(t)). (21)
This is maximised with the maximum likelihood estimate:

Θ(t+1) = argmaxΘ〈log p(y, s |Θ)〉q(s|Θ(t)). (22)
To keep the derivation focused, we present a simple derivation of the update equations only for a
single element of W . The other parameters are similarly derived and are not covered here. For
pedagogical purposes we first derive an update equation without a max rule, then we show how this
rule should be modified when the max rule is used. Assuming the data y(n) is distributed as follows:

y(n) = ws(n) + ε (23)
where ε ∼ N (µ = 0;σ2). for w. This gives the conditional probability as:

p(y(n) | s(n), w) =
1

σ
√

2π
e
− 1

2

(
y(n)−ws(n)

σ

)2

(24)

In log space this is a quadratic function:

log p(y(n) | s(n), w) = c− log σ − 1

2

(
y(n) − ws(n)

σ

)2

(25)

and is summed over all datapoints n. The maximum likelihood solution differentiates this sum with
respect to w (this function is linear in σ and when differentiated σ can be discarded) to find the
maximum:

d

dw

[∑
n

(
y(n) − s(n)w

)2
]

= 0. (26)

From which the maximum is given by:

w =

∑
n s

(n)w(n)∑
n s

(n)2
. (27)

However we care about finding the ML solution for the max rule:

y(n) = max
h

{
Whs

(n)
h

}
+ ε (28)

If the new estimates of Wh do not change significantly then the simple derivation for w will apply
to Wh, but only the data for which Wh is the maximum will be used. The data is going to vary over:
the number of images N , the number of samples per image K, and we will estimate Whd per latent
dimension h and observed dimension (or pixel) d. This leads to:

Whd =

∑N
n

∑K
k δ(h is max)s

(k)
hn y

(n)
d∑N

n

∑K
k δ(h is max) s

(k)
hn

2 (29)

which corresponds to the results given in equation 9 of the main paper. δ(h is max) is used to identify
the index for which Whds

k
hn is the maximal cause of the data, if it is not the maximal cause, then

δ() returns 0, and the term does not contribute to the sum.
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B Gibbs Sampler

Our likelihood can be expressed as follows:

log p(yd|sh, sH\h, θ) = m(sh) =


m1(sh) s < Pδ(1)

m2(sh) Pδ(1) ≤ s < Pδ(2)

m3(sh) Pδ(2) ≤ s < Pδ(3)

...
...

mD+1(sh) Pδ(D) ≤ s,

(30)

and the summation of all these segments of the peicewise function of our likelihood (12) is expressed
with:

mi(sh) =

j−1∑
j=1

rδ(j ′)(sh) +

D∑
u=1

lδ(u)(sh) for 1 ≤ i ≤ D + 1. (31)

The left and right sides of each transition point Pd can be formulated as

ld(sh) = −1

2
log(2π)− log(σ) +

1

2σ2
(yd −max

h′ \h
{Wdh′s

′
h}) (32)

rd(sh) = −1

2
log(2π)− log(σ) +

1

2σ2
(yd −Wdhsh)2, (33)

and with this calculation, the operation in Eq. 31 can be elegantly expressed by computing three
coefficients for each segment mi(sh).

C Experiments: Artificial Data

We ran several sets of experiments on the exact same ground-truth dataset described and displayed
in 4, but varied the number of latents H ′ we select, considering the range H ′ ∈ (4, 10) where
H = 10. All experiments recover ground-truth parameters Θ = (π, µpr, σpr,W, σ). Our algorithm
reliably converges to globally optimal solutions of all parameters in all runs of the experiments with
30 EM iterations. Shown are are a few examples.
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Figure 6: Parameter recovery results for H ′ = 4.
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Figure 7: Parameter recovery results for H ′ = 5.
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D Experiments: Natural Image Patches

Here we show further results from the experiment on N = 50, 000 preprocessed and channel split
natural image patches of 16× 16 pixel.

First we relate the generative fields that are learned from image patches to their corresponding re-
ceptive fields as measured in biological systems. In order to do so we carried out several reverse
correlation experiments, with the aim of identifying the relationship between the generative fields
and the reverse-correlation fields. To calculate the reverse correlation for a single latent variable
we calculate the average activation for a particular image (since the code is sparse, most of the time
activations will be zero). The images are then averaged together, weighted by the average activation.

In Fig. 8A we show the generative fields that are learned with our method. Fig. 8B shows the re-
ceptive fields obtained by estimating the first order linear mapping from input to hidden units. The
mapping is estimated by combining the preprocessing (a linear mapping with a kernel for pseudo-
whitening) with the mapping obtained by reverse correlation using preprocessed patches. As can
be observed by comparing Fig. 8A and B, the qualitative and quantitative shapes of generative and
receptive fields are essentially equal. For the results in Fig. 5 we used the receptive field estimates
in Fig. 8B.

For further analysis, we matched the fields with Gabor and DoG functions. to determine the number
of Gabor-like and DoG fields. Afterwards, we plotted the distribution of Gabor shapes in an nx/ny
plot as was first suggested in an experimental study [21]. We do not include the receptive fields clas-
sified as DoG fields for the plot because such center-surround fields cannot be matched with Gabor
functions (Gabors do not parameterize DoGs except of the degenerate case of Gaussian functions).
As a consequence, the cluster of field shapes close to origin (in [21] associated with globular fields)
is not observed in the plot of Fig. 5.

As an alternative to estimating only the second part of the mapping by reverse correlation, we can
also estimate the whole mapping using raw (unprocessed) image patches as samples. As a control,
Fig. 8C shows the estimates obtained in this way. The colors of the image are significantly different
as a result of the different range. A preprocessed image patch has a range from [-10..+10] with a
large proportion of the image taking value zero. The original image patches have a range [0..1] and
a non-zero mean value. While this is the main source of the differences, the basic shapes are again
the same as for the fields in A and B.
Finally, regarding the nx/ny analysis, note that the type of preprocessing can have a significant im-
pact on the Gabor statistics. This includes an impact of separate on- and off-channels (also compare
[34] for a study of different channels within cortical layers).

[34] C. I. Yeh, D. Xing and R. M. Shapley. “Black” responses dominate macaque primary visual
cortex V1. The Journal of Neuroscience, 29(38): 11753–60, 2009.
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Figure 8: A Full set of H = 500 learned generative fields (Wh). B Fields after reverse correlation
with preprocessed input patches and C after reverse correlation with raw input patches.
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Figure 9: Histogram of the latent activations of the 20 most often active dictionary elements. This
corresponds to the prior over latent units that we have assumed in our model, thus supporting the
consistency of the model.
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E Experiments: Image Inpainting

As a sanity check we tested our model on a well-known task: image inpainting. Given an image (a)
we can degrade the image by deleting 80% of the pixel values to create image (b). Using nothing
other than image (b) we are able to train a model of image patches which can then be used to fill
in the rest of the image pixels (c). Our images patches are 8 × 8 in size and split into 3 channels
for red, green and blue pixels. We ensure that missing pixels never contribute to the inference,
which is a cleaner and less computationally-demanding method than filling in missing pixels with
best estimates, as is sometimes reported [5]. While drawing samples from the posterior p(s | y,Θ)
we also kept track of the mean prediction: maxh{wdhsh}. After seeing all posible image patches,
we can use the mean prediction as our best estimate of the picture. Since we have ground truth
we are able to evaluate the predictive accuracy. We obtained a peak signal-to-noise ratio of 26.
This is comparable to other methods [5, 33], and we hope that this will reach state-of-the-art with
further refinements to the model (for example allowing individual means for each spike and slab, or
allowing different noise estimates for each pixel in the image patch). As image restoration is not the
main thrust of this paper these extensions will be explored in further work.

(a) Original image. (b) Image, 80% removed pixels. (c) Resulting ’painted in’ image.

Figure 10: Application of the algorithm to image inpainting.

F Experiments: Image Denoising

Another possible use of our image model is denoising an image. Given an image (a) we add Gaussian
noise (zero mean with standard deviation 25) to obtain image (b). Using only image (b) we train a
model of natural patches which can then be used to infer what the original image was. This inference
is shown in image (c). We get a Peak Signal-to-Noise ratio of 31 which is comparable to [5, 33].

(a) Original image. (b) Noisy input image. (c) Resulting denoised image.

Figure 11: Application of the algorithm to image denoising.
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