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A B S T R A C T   

Over the last several years, semantic image segmentation based on deep neural networks has been greatly 
advanced. On the other hand, single-instance segmentation still remains a challenging problem. In this paper, we 
introduce a framework for segmenting instances of a common object class by multiple active contour evolution 
over semantic segmentation maps of images obtained through fully convolutional networks. The contour evo-
lution is cast as an energy minimization problem, where the aggregate energy functional incorporates a data fit 
term, an explicit shape model, and accounts for object overlap. Efficient solution neighborhood operators are 
proposed, enabling optimization through metaheuristics such as simulated annealing. We instantiate the pro-
posed framework in the context of segmenting individual fallen stems from high-resolution aerial multispectral 
imagery, providing problem-specific energy potentials. We validated our approach on 3 real-world scenes of 
varying complexity, using 730 manually labeled polygon outlines as ground truth. The test plots were situated in 
regions of the Bavarian Forest National Park, Germany, which sustained a heavy bark beetle infestation. Eval-
uations were performed on both the polygon and line segment level, showing that the multi-contour segmen-
tation can achieve up to 0.93 precision and 0.82 recall. An improvement of up to 7 percentage points (pp) in 
recall and 6 in precision compared to an iterative sample consensus line segment detection baseline was ach-
ieved. Despite the simplicity of the applied shape parametrization, an explicit shape model incorporated into the 
energy function improved the results by up to 4  pp of recall. Finally, we show the importance of using a high- 
quality semantic segmentation method (e.g. U-net) as the basis for individual stem detection, as the quality of the 
results degraded dramatically in our baseline experiment utilizing a simpler method. Our method is a step to-
wards increased accessibility of automatic fallen tree mapping in forests, due to higher cost efficiency of aerial 
imagery acquisition compared to laser scanning. The precise fallen tree maps could be further used as a basis for 
plant and animal habitat modeling, studies on carbon sequestration as well as soil quality in forest ecosystems.   

1. Introduction 

Forest ecosystems are the most species-rich ecosystems on earth and 
play an essential role in providing ecosystem services such as wood 
production, drinking water supply, carbon sequestration, and biodi-
versity preservation (Watson et al., 2018). However, forests are under 
immense pressure especially because of the unsustainable use of their 
resources, conversion into other land use types, and global change. 
Therefore, there is a strong need for better management and conserva-
tion practises allowing a sustainable use that can secure all the services. 
A critical precondition for sustainable forest management are 

monitoring schemes that provide the necessary information for pre-
paring management plans. Besides growing stock, yield and tree species 
distribution, also deadwood is an essential indicator of forest health as e. 
g. in temperate forests, up to one-third of all species depend on it during 
their life cycle (Müller and Bütler, 2010). Moreover, it is not just the 
amount of deadwood that matters for the conservation of biodiversity 
(Seibold and Thorn, 2018); also its quality is decisive for the conserva-
tion of biodiversity. Therefore, it is also important to determine the tree 
species, the decay stage and if the dead wood is standing or lying. 
Estimating the amount of both types of deadwood is not just decisive for 
the maintaining biodiversity, but also for management of adverse effects 
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of forest disturbances such as wind throws and insect outbreaks. The 
latter aspect is becoming increasingly important as the frequency and 
severity of such disturbance events are continuously on the rise due to 
global change (Seidl et al., 2017). Such events can affect large tracks of 
forested land in a short time span (e.g. windthrow). That makes it very 
difficult to accurately assess the amount of timber affected by conven-
tional field-based methods. Therefore, remote sensing techniques are a 
natural and cost-efficient alternative to field works. This demand for 
accurate information on the distribution of coarse woody debris (CWD) 
in forests, driven by the aforementioned factors, has sparked research 
interest within the remote sensing community. In recent years, a number 
of contributions have focused on detection and classification of dead 
wood from laser scanning data (Marchi et al., 2018). Delineating indi-
vidual fallen stems in both aerial (e.g. Polewski et al. (2015)) and 
terrestrial (e.g. Polewski et al. (2017)) point clouds was shown to be 
feasible. 

While the 3D information inherent in laser scanning point clouds 
provides a solid basis for fallen tree detection, obtaining high density 
laser scanning data may be prohibitively expensive. Multispectral aerial 
imagery offers a more accessible alternative. The near-infrared channel 
is particularly useful for this purpose, since dead and diseased vegeta-
tion produces a distinct reflectance signature in this spectral band 
(Jensen, 2006). In case of fallen tree stems, resolution at the level of 
decimeters or better is crucial to the success of detection, because the 
width of the target object can be as low as 30–40  cm, and as such they 
could appear as only a single row of pixels (or be altogether missing) 
within a lower-resolution image. A number of studies considered the 
determination of tree health (e.g. Safonova et al. (2019)) or direct 
detection of coarse woody debris (e.g. Freeman et al. (2016)) from high- 
resolution optical imagery. Currently, most approaches dealing with 
fallen trees focus on either analyzing groupings of pixels without a one- 
to-one correspondence to stems (e.g. Einzmann et al. (2017, 2019)), or 
determining lines which represent the positions and lengths of individ-
ual trees, disregarding their thickness (Panagiotidis et al., 2019; Duan 
et al., 2017). 

This paper considers the task of delineating single fallen stems in the 
broader context of instance segmentation in imagery. Our goal is to 
extract polygons representing individual stems from difficult scenarios 
which contain dozens of partially overlapping and intersecting objects 
(see Fig. 1). While dense semantic segmentation of images has been 
arguably all but solved using decoder-encoder architectures like fully 
convolutional networks (e.g. Ronneberger et al. (2015)), extraction of 
individual object instances still remains a challenge and an active area of 
research within the neural network and computer vision community 
(Arnab and Torr, 2017). One of the first end-to-end pipelines for instance 
segmentation based on convolutional neural networks (CNN) is due to Li 
et al. (2017). However, this approach was later found to display sys-
tematic errors on overlapping instances and create spurious edges (He 
et al., 2017). The Mask R-CNN method proposed by He et al. (2017) 
represented a milestone in the development of robust CNN-based 

instance segmentation methods. It builds upon earlier work for region- 
of-interest (ROI) classification and object detection by extracting fea-
tures from ROIs using CNNs (Ren et al., 2017). Specifically, the system 
consists of (i) a region proposal network, which determines potential re-
gions in the image that could represents objects of interest, and (ii) a 
dedicated CNN which branches out into 3 types of output, predicting, for 
each candidate region, the object class, the true bounding box, as well as 
the binary object pixel mask. The contributions of (He et al., 2017; Ren 
et al., 2017) played a key role in establishing the two-network coarse-to- 
fine region proposal/classification paradigm in instance segmentation, 
which underlies state-of-the-art methods. It should be noted that most of 
new method development has been geared towards benchmarks and 
competitions published by the computer vision community, such as the 
Large Scale Visual Recognition Challenge (LSVRC) (Russakovsky et al., 
2015). These datasets usually contain large quantities of close-range 
images captured from handheld devices, depicting clearly-visible 
’common’ objects such as household items, people, animals, etc. The 
emphasis is put on the network’s ability to recognize a variety of object 
classes (the LSVRC data contains 200 categories). In contrast, remote 
sensing images, especially acquired in a natural resource monitoring 
setting, usually contain many possibly overlapping instances of the same 
object category, like fallen trees in a bark beetle attack zone (Fig. 1) or a 
cluster of tree crowns. Although the optical sensor hardware is 
improving, the average resolution of aerial remote sensing imagery is 
still significantly smaller than in case of close-range photography, 
resulting in possibly blurred object boundaries. This poses several 
challenges for the state-of-the art instance segmentation paradigm 
described above. First, CNN-based approaches suffer from coarseness of 
feature maps and limited information contained in the candidate object 
regions of interest, which leads to degraded performance for small and 
multi-scale object localization (Zhao et al., 2018). This problem could be 
exacerbated further by the low resolution and blurred object boundaries 
in remote sensing images. Second, note that within-category overlap is one 
of the core difficulties of instance segmentation according to He et al. 
(2017). Overlapping region proposals, containing candidate object 
bounding boxes, are usually pruned using a discrete process like non- 
maxima suppression, which means that if the candidate generator pro-
duces a high ’objectness’ score on an image region not centered on a real 
object (due to blurred boundaries and heavy candidate overlap), the true 
detections could be thrown away and never even make it to the classi-
fication stage. In the context of fallen stem segmentation, the overlap is 
potentially on a level which would never be observed in a classical CV 
dataset. Finally, specifically for the case of fallen stems, detection based 
on axis aligned bounding boxes has a key weakness. Typically, imagery 
obtained in remote sensing flight campaigns features a ground sampling 
distance of no less than 10–15  cm. Therefore, fallen tree trunks would 
appear only several pixels wide and possibly hundreds of pixels long. 
Assuming that the stems may be arbitrarily oriented within the image, 
the tree’s axis-aligned bounding box would be overwhelmingly popu-
lated with irrelevant pixels (except close to the main diagonal). This 

Fig. 1. (a)-(b) sample images from the LSVRC dataset (Russakovsky et al., 2015). The data is geared towards high-resolution close-range photography from handheld 
devices. (c) sample nadir-view color infrared image showing multiple intersecting fallen stems. 
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could potentially also be a problem during training, since many end-to- 
end networks designed for instance segmentation of everyday objects 
with well-defined ’standard’ orientations from close-range photography 
(including models from the R-CNN family such as He et al. (2017,)) are 
based on axis-aligned bounding box annotations as input example labels. 
Once again, this could lead to the situation where most of the bounding 
box is occupied by irrelevant background pixels, making the neural 
network learn random noise instead of the target class. 

To alleviate some of these problems, we introduce a general frame-
work for segmenting sets of overlapping objects of a single category into 
individual instances. Instead of attempting to detect objects in axis- 
aligned bounding boxes, we maintain shape parametrizations and 
associated rigid transform parameters separately per instance, effec-
tively evolving multiple active contours (Cremers et al., 2007) simul-
taneously. Our framework explicitly models object overlap as well as 
prior shape information. Starting from an initial random state and an 
upper bound on the number of objects in the scene, the optimization 
process eliminates redundant shapes by evolving them to empty con-
tours. The method operates on the probability maps produced by dense 
semantic segmentation, taking advantage of object appearance prior 
information learned from training examples. We instantiate the frame-
work specifically for fallen tree stem detection, evolving rectangular 
shapes according to the energy functional which combines a nonpara-
metric shape prior, a data fit term, and a collinearity model. We propose 
a simulated annealing scheme with stochastic sampling as the method of 
choice for evolving the optimal shapes and their spatial orientations. 
The evaluated energy is defined on the space of polygons. The target 
polygons are obtained by finding contours of 0.5-superlevel sets of 
probability images from semantic segmentation. This enables efficient 
computation of energy changes from applying neighboring moves, 
because calculating intersections between the rectangular shapes and 
the target polygons can be carried out with log-linear time complexity 
with respect to the number of edges in the polygons (Žalik, 2000), as 
opposed to being a function of the number of image pixels. 

The rest of this paper is organized as follows. In Section 2, we report 
related work regarding both the detection of fallen trees from imagery 
and methodological aspects of combining active contour methods with 
CNN based segmentation. Section 3 introduces the general framework 
for instance segmentation of images based on multi-contour evolution 
on an abstract level, whereas in Section 4, the framework is instantiated 
for detecting fallen trees; we provide details of the tailored solution 
neighborhood operator for the stochastic optimization, the initialization 
strategy as well as specific realizations of the shape prior and other el-
ements of the energy functional. In Section 5, experimental evaluations 
of the proposed method are provided, in comparison to a baseline 
operating on line level. Also in this section we investigate the impact of 
using a CNN for generating the appearance prior versus a simple base-
line derived from raw image channel intensities. The experimental re-
sults are discussed in Section 6, and the most important conclusions are 
summarized in the final section. 

2. Related work 

To the best of our knowledge, this is the first contribution addressing 
the large scale detection of fallen stems from aerial imagery on a poly-
gon level, which provides a comprehensive evaluation on over 700 
reference polygons. From an application standpoint, the two approaches 
conceptually most similar to ours use the Hough transform to fit lines 
representing individual stems in binarized images of target class poste-
rior probabilities obtained on the basis of hand-crafted textural features 
(Duan et al., 2017) or spectral thresholding (Panagiotidis et al., 2019). 
Thiel et al. (2020) performed generic line detection within RGB ortho-
mosaics derived from very-high resolution unmanned aerial system- 
acquired imagery to find approximate fallen stem shapes.Lopes 
Queiroz et al. (2019) used a generic segmentation procedure on the 
spectral bands of the aerial image combined with the normalized 

difference vegetation index (Tucker, 1979), and subsequently classified 
the resulting clusters based on spectral/textural features augmented 
with LiDAR derived information (canopy height model). Einzmann et al. 
(2017) applied a similar approach, using large-scale mean shift in the 
role of the segmentation algorithm and augmenting the set of spectral 
bands with linear transformations of raw bands, textural features and 
multiple vegetation indices. However, neither of these approaches re-
stricts the generic image segmentation to follow the shape or appearance 
of fallen stems, therefore in case of multiple intersecting trees, individ-
ual stems would not be delineated. We believe that a key advantage of 
our proposed method versus generic segmentation approaches is that 
the former has knowledge of the target object’s shape, whereas the latter 
do not. Therefore, while it may be possible to find parameters of generic 
methods that produce acceptable segmentations for any particular 
scene, these parameters (e.g. bandwidths, number of clusters) and not 
readily learnable from training data or easily transferable between 
scenes. In contrast, our method is informed on the dimensions of fallen 
stems as well as on the interactions between them, allowing it to 
decompose the scene into objects which plausibly look like fallen stems. 
On the area level, Latifi et al. (2018) used synthetic RapidEye images to 
assess the extent of damage in spruce stands resulting from a bark beetle 
infestation. Regarding the use of deep neural networks for detecting 
diseased and dead trees, Safonova et al. (2019) applied a CNN to classify 
tree vitality from patches of RGB aerial imagery. Ostovar et al. (2019) 
used the Faster R-CNN (Ren et al., 2017) to detect regions of close-range 
images containing tree stumps, which were then classified with respect 
to their root and butt-rot status. 

On a more abstract level, our method could be interpreted as a way of 
integrating CNNs with (multiple) active contour segmentation. Other 
ways of achieving this were previously reported by several authors. In 
the context of individual building segmentation from aerial imagery, 
Marcos et al. (2018) proposed an end-to-end trainable framework uti-
lizing CNNs for learning the geometric prior parametrizations of an 
active contour model (ACM). Inference from the ACM was integrated 
into the CNN weight update schedule through computing a structured 
loss on the predicted and ACM’s predicted output versus ground truth 
polygons, and backpropagating the loss to the CNN parameters. How-
ever, there is a fundamental difference of the approach by Marcos et al. 
(2018) compared to our method. The authors use a generic active con-
tour model parameterized by the polygon coordinates, and learn to 
predict dense (per-pixel) magnitudes of polygon curvature and length 
penalty terms. In particular, they do not attempt to model the target 
object shape directly. Conversely, our method does not operate on 
explicit polygon coordinates, but rather first tries to learn a compact 
representation of the target object shape in terms of abstract shape co-
efficients, and performs the contour evolution implicitly in the coeffi-
cient space. 

Our proposed approach borrows some ideas from the work of 
Cremers and Rousson (2007), where the active contour energy func-
tional was designed to interact with the input image indirectly through 
the intensity priors. The authors also directly modeled the prior distri-
bution of the shape coefficients using a kernel density estimator. Our 
energy formulation shares some similarities with the energy function 
utilized by Milan et al. (2014) for multiple object tracking, which also 
included a data fit term, pairwise interaction terms between tracked 
objects as well as unary potentials encoding physical motion constraints 
(analogous to proir information). 

3. Multi-contour segmentation with priors 

We consider the generic problem of fitting multiple instances of a 
single object class from abstract ’images’. Although all objects are by 
construction of the same class, a reasonable amount of intra-class vari-
ation in shape as well as appearance is allowed and expected. Usually, 
the image space I will correspond to either the image plane R2 or 3D 
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Euclidean space R3, allowing to model e.g. 2D rasters or (voxelized) 3D 
point clouds. However, any vector space is viable where there is a 
meaningful concept of shape, rigid transformations (isometries) and a 
way of measuring shape overlap. Denoting an input image as I ∈ I 

sampled from the image space, we assume that I contains an unknown 
number M of object instances from the target class C. Our goal is to 
retrieve approximations of the target objects with respect to a pre- 
specified shape model Ps(α) and its associated shape generator func-
tion fs(α), parameterized by a vector of abstract shape coefficients α. The 
shape generator instantiates shapes in standard position (centroid at the 
coordinate system origin, no rotations around axes). This function may 
be as complex as a generative adversarial network, where the shape 
coefficients represent the randomly sampled noise input, or as simple as 
a rectangle generator parameterized by a width and a height. Addi-
tionally, each modeled shape is equipped with its own set of position/ 
orientation parameters θi which would typically include translations 
with respect to each coordinate axis and appropriate rotations as 
required by the dimensionality of I. We will denote the shape generated 
by fs for coefficients α and rigidly transformed by θ as fs(α

⃒
⃒θ). 

In order to decouple shape and appearance (i.e. image intensity) 
information, we introduce an explicit discriminative prior Pi(C|I) on the 
image space I. This image intensity prior transforms the original, 
possibly multi-channel I into a new probability image Ip encoding the class 
probabilities of C given the intensities. In practice, this can be seen as the 
output of a semantic segmentation, like the U-net (Ronneberger et al., 
2015) in case of 2D raster images, or VoxNet (Maturana and Scherer, 
2015) for voxelized 3D point clouds. By extracting contours of q-level 
supersets of Ip (using e.g. the marching cubes algorithm by Lorensen and 
Cline (1987)), we may obtain a partition of I into regions corresponding 
to the target class, or ’foreground’, versus ’background’ regions. The 
comparison between shapes evolving according to the model Ps and 
’foreground’ shapes present within the image now boils down to the 
calculation of set intersections and differences. Indeed, the shape model 
does not interact with the original image I other than through the 
extracted level supersets from Ip. We define the collection of connected 
regions inside the probability image Ip as S = {si⊂Ip, i = 1…ns}, cor-
responding to the extracted level supersets. The elements of S form 
polytopes of appropriate dimension, e.g. polygons in 2D and poly-
hedrons in 3D. Note that these polytopes need not represent single in-
stances of the target objects. In highly complicated scenarios, we expect 
them to consist of many intersecting and overlapping instances. 

3.1. Energy function 

Based on the definitions from the previous section, we are now ready 
to introduce the energy function which drives the evolution of the 
modeled shapes. Let M′ denote an initial overestimation of the true 
number of objects M inside the input image. Then, each evolving shape 
is described by its vector of shape coefficients αi as well as the location/ 
orientation parameters θi. Collecting all models parameters into a vector 
Ω = (ωi = (αi, θi))i=1…M′ , let F(ωi) be an alias for fs(αi

⃒
⃒θi). The aggregate 

energy of the shape set is given by Eq. 1: 

E(Θ|S) = γdEd

[

∪
s∈S

s,∪
i
F(ωi)

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
data fit term

− γs

∑

i
logPs(αi)

⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟ shape probability term

+ γo

∑

j,k,j∕=k

Eo
[
F
(
ωj
)
,F(ωk)

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
pairwise overlap term

+
∑

u
τuEaux,u(Ω)

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅ ⏟
auxiliary potentials

(1)  

An illustration of each energy term/potential’s role and impact on the 
aggregate energy is given by Fig. 2. 

3.1.1. Data fit potential 
The role of the data fit term Ed(τ,ϕ) is to ensure that the model shapes 

coincide well with the target class regions of the image. It is a function of 
two sets: (i) the union τ of all target class regions s ∈ S extracted from the 
probability image Ip, and (ii) the union ϕ of all currently modeled shapes 
obtained from ’decoding’ the elements of Ω with the generator function 
fs and applying the respective rigid transform. Ideally, the sets (i) and (ii) 
should coincide, however in practice the differences τ⧹ϕ as well as ϕ⧹τ 
are non-empty. The former corresponds the parts of regions designated 
as ’target class’ that are not covered by any model shape (false nega-
tives). Symmetrically, ϕ⧹τ indicates regions deemed as ’target class’ by 
the model, but not intersecting with any elements s ∈ S, and thus lacking 
evidence in the input image (false positives). The value of τ⧹ϕ impacts 
the specificity/recall of the segmentation, whereas ϕ⧹τ impacts the 
sensitivity/precision. We allow an assignment of different weights to 
these two quantities, reflecting the fact that the tradeoff between pre-
cision and recall may be asymmetric for some applications: 

Ed
(
τ,ϕ
)
= 2
[(

1 − πp
)
λ
(
τ⧹ϕ

)
+ πpλ

(
ϕ⧹τ

)]
(2)  

In the above, the term λ(⋅) can be thought of as analogous to the Leb-
esgue measure on the Euclidean space of the appropriate dimension, i.e. 
area in 2D, volume in 3D, etc. The term related to the precision (false 

Fig. 2. Illustration of the impact of the various terms on the aggregate energy function, which is a linear combination of the data fit, shape, and overlap potentials. 
Left column: data fit potential ensures that a large percentage of high-probability target class areas are covered by the evolving contours. Middle column: shape 
potential ensures that the evolved shapes are within the expected variability of the target objects’ shape distribution. Right column: overlap term prevents covering 
the same parts of the image with different evolving contours. 
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positives) is weighted with 0⩽πp⩽1. 

3.1.2. Shape probability potential 
This term is directly derived from the prior shape model Ps(α) as the 

sum of negative log-likelihoods of all model shapes. It acts as a regu-
larizer for the shape coefficients, penalizing shapes which become too 
unlikely with respect to the learned prior. Note that for some generator 
functions, the shape coefficients α may already be distributed uniformly 
by construction inside the (appropriately scaled) unit hypercube, in 
which case the shape probability term boils down to a constant and may 
be removed. For an example, see e.g. (Polewski et al., 2020), where a 
generative adversarial network with uniformly distributed latent vari-
ables was used as the shape model within the active contour segmen-
tation framework. 

3.1.3. Overlap potential 
Since our framework assumes that initial guess on the number of 

shapes M′ is biased towards too high values, we expect that part of the 
model shapes will become redundant. To prevent duplicate coverage of 
the same image regions by different model objects, and to allow the 
number of active shapes to converge to the true number of objects 
present within the image, we define an overlap potential Eo which pe-
nalizes overlapping of model shapes. Acting together with the data fit 
term Ed, it is designed to direct a redundant shape towards evolving into 
an empty contour: Eo will push a shape away from areas already occu-
pied by other model shapes, while Ed will ensure that the shape does not 
occupy background regions of the input image. Note that not all forms of 
overlap should be penalized. For example, in our application of fallen 
tree segmentation, intersections of tree stems that are not parallel to 
each other are unlikely to be due to instance duplication, instead they 
are the result of physical overlap and stacking. To model this, we utilize 
an auxiliary term κ(o1, o2) ∈ [0; 1] which quantifies the likelihood of 
model shapes o1, o2 belonging to the same real-world object. The overlap 
potential is then defined in a pairwise manner as: 

Eo(o1, o2) = κ(o1, o2)λ(o1 ∩ o2) (3)  

The potential Eo is evaluated over all pairs i, j ∈ 1, 2,…,M′ such that 
i < j, with each value contributing to the total energy E(Θ) in equal 
proportion. Once again, λ indicates the ’natural’ measure in the 
Euclidean space of the appropriate dimension (area, volume etc.). 

3.1.4. Auxiliary potentials 
Our framework allows for application specific potentials Eaux,u, each 

weighted by their own coefficient τu. In our formulation, to maintain the 
highest flexibility, these potentials are functions of the entire model 
parameter vector Ω, which means they have access to both the shape 
coefficients and the decoded/transformed model shapes. This formula-
tion admits unary, pairwise, or even higher order potentials. In Section 
4, an example of an auxiliary pairwise potential is shown, which is 
designed to discourage collinearity between the modeled stems. 

3.2. Relationship to active contour segmentation 

The proposed framework can be viewed as one possible generaliza-
tion of the classic foreground-background active contour raster image 
segmentation (Cremers et al., 2007) to multiple object instances and 
more general images. The statistical formulation by Cremers and 
Rousson (2007) assumed that the evolving contour of a target class C 
region has an abstract shape parametrization α, endowed with a prior 
model Ps(α). The optimized energy functional represented a trade-off 
between the data fit term and probability of the evolving shape. 
Denoting Hα[x] as the indicator function for image element x lying inside 
the shape, their energy objective can be written as: 

E′(α) = −
∫
(Hα[x]logP(x|C)

+(1 − Hα[x])logP(x| ∕= gC))dx
− logPs(α)

(4)  

Here, the foreground and background regions have their separate image 
intensity likelihoods P(x|C),P(x| ∕= gC). By assuming equal prior prob-
abilities on the foreground/background regions (P(C) = P( ∕= gC)), 
based on the Bayesian rule we can express the data fit potential in terms 
of the target class posterior P(C|x), resulting in: 

E’’(α) = −

∫

Hα[x]logP(C|x)dx
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

data fit inside contour

−

∫ (

1 − Hα[x]
)

log[1 − P(C|x)]
)

dx
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

data fit outside contour
− logPs(α)
= E’(α) + D

(5)  

The new energy function E′′ differs from E′ only by a constant value D, 
therefore their extrema coincide (see e.g. Polewski et al. (2015)). 
Moreover, under certain assumptions, the data fit terms inside and 
outside of the contour are analogous to the quantities λ(τ⧹ϕ) and λ(ϕ⧹τ)
from our data fit potential (Eq. 2). Specifically, recall that the target 
connected regions si ∈ S are high-probability q-level supersets extracted 
from the probability image. We can therefore view the posterior class 
probability inside and outside these regions as respectively pin ≈ 1 − ∊,
pout ≈ ∊, where ∊ is a small positive constant. In this setting, the inter-
section of all objects modeled by the current state Ω with the set of target 
regions S will contribute λ(τ ∩ ϕ)⋅log(1 − ∊) ≈ 0 to the data fit potential, 
since log(1 − ∊) tends to 0 with ∊. On the other hand, the difference ϕ⧹τ 
will contribute λ(ϕ⧹τ)⋅log∊, which tends to − ∞ as ∊ tends to zero. By a 
similar argument, one can show that the data fit term outside the con-
tour from Eq. 5 is dominated by the symmetrical expression λ(τ⧹ϕ)⋅log∊. 
Setting πp to 0.5 in our data fit potential (Eq. 2), we see that an 
instantiation of our framework with a single modeled object is equiva-
lent to the original statistical active contour formulation with proba-
bilities quantized at 1 − ∊, ∊ such that γd = − log∊. 

3.3. Optimization 

To optimize the total energy from Eq. 1, various stochastic and 
combinatorial techniques are available based on the choice of quanti-
zation or lack thereof for the model variables. If all shape and rigid 
transformation parameters are continuous, Eq. 1 can be minimized using 
stochastic methods like simulated annealing (Kirkpatrick et al., 1983) or 
a hybrid Monte Carlo-gradient based approach like basin hopping 
(Wales and Doye, 1997; Li and Scheraga, 1987). The latter is particularly 
useful in settings where the gradients of all the energy function terms 
with respect to all model variables may be computed analytically. 
Sometimes it may be reasonable to discretize the domain of one or more 
variables, e.g. the shape translation parameters from θi could be 
expressed in pixels or voxels. In such cases, generic metaheuristics for 
solving mixed combinatorial/continuous problems are applicable, 
including methods from the class of evolutionary algorithms, specialized 
versions of tabu search (e.g. (Siarry and Berthiau, 1997)), and simulated 
annealing. 

The aforementioned metaheuristics are based on exploring the 
neighborhood of the current solution and making local moves which 
alter a small part of it. This makes it cumbersome and inefficient to apply 
these local-search based methods to the minimization of our energy (Eq. 
1), since the data fit term requires a union of all of the evolving shapes 
ϕ =

⋃
iF(ωi), and an intersection of this union with the high-probability 

object contours from the input image τ =
⋃

s∈Ss. Even if only one shape 
ωi is altered, all of the aforementioned calculations need to be repeated 
to re-evaluate the data fit potential Ed. To localize the effects of 
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modifying individual shapes and make local search steps more efficient, 
we propose the following approximation. First, observe that as τ does 
not depend on the model variables, it can be precomputed once and 
reused in the calculations. Moreover, we may express the intersection 
ϕ ∩ τ as a union of intersections 

⋃
iτ ∩ F(ωi). Applying the inclu-

sion–exclusion principle, we can write: 

|ϕ ∩ τ| =
∑

i

⃒
⃒
⃒
⃒
⃒
τ ∩ F(ωi)

⃒
⃒
⃒
⃒
⃒

⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟
unary term

−
∑

i⩽i<j

⃒
⃒
⃒
⃒
⃒
τ ∩ F(ωi) ∩ F

(
ωj
)
⃒
⃒
⃒
⃒
⃒

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
pairwise term

+
∑M’

k=3
( − 1)k+1

(
∑

1⩽i1<…<ik

⃒
⃒
⃒
⃒
⃒
τ ∩ F(ωi1 ) ∩ … ∩ F

(
ωik

)
⃒
⃒
⃒
⃒
⃒

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
residual

(6)  

We choose to approximate |ϕ ∩ τ| by its underestimation given by the 
first two terms (unary and pairwise) in the inclusion–exclusion expan-
sion (Eq. 6). This corresponds to ignoring contributions from subsets 
where 3 or more of the model shapes intersect. In practice, we believe 
this approximation is sufficient, because the model explicitly discour-
ages overlap of multiple shapes through the overlap potential Eo. 
Moreover, by using an underestimation of the true intersection area 
|ϕ ∩ τ|, the multi-shape overlap is penalized even more due to the sub-
traction of the overlapping area in the pairwise term and not recovering 
it in the (removed) residual. This leads the model away from undesirable 
overlap. However, the main benefit is that the influence of changing a 
single model shape i (by mutating its shape coefficients or rigid trans-
form parameters) is now reduced to affecting one unary term |τ ∩ F(ωi)|

and at most M′ pairwise terms 
⃒
⃒τ ∩ F(ωi) ∩ F(ωj)

⃒
⃒, j ∈ 1,…,M′. The pairs 

i, j which do not intersect can be filtered out using simple bounding box 
criteria. Combined with caching the values 

⃒
⃒τ ∩ F(ωi)

⃒
⃒,
⃒
⃒τ ∩ F(ωi) ∩ F(ωj)

⃒
⃒

for all model objects and their pairs, the term |τ⧹ϕ| can be efficiently 
updated based on the values of |τ ∩ ϕ|, |τ|, by using the identity |A⧹B| =
|A| − |A ∩ B|. In a similar manner, the value of ϕ may be approximated by 
caching and updating the first and second-order terms of the inclu-
sion–exclusion expansion 

⃒
⃒F(ωi)

⃒
⃒,
⃒
⃒F(ωi) ∩ F(ωj)

⃒
⃒, yielding |ϕ⧹τ|. More-

over, the caching of the pairwise terms 
⃒
⃒F(ωi) ∩ F(ωj)

⃒
⃒ also enables fast 

updates of the term Eo. Finally, the shape model Ps is already in additive 
form, therefore altering αi influences only the logPs(αi). Care should be 
taken when instantiating auxiliary potentials to ensure that they also 
allow efficient partial updates, leading to applicability of local solution 

perturbation based metaheuristics. 

4. Application of our framework to the instance segmentation of 
fallen trees 

In this section, we instantiate the framework described in the pre-
vious chapter, obtaining a method for detecting individual fallen stems 
from aerial imagery. We consider a 2D raster image with Nc channels as 
input. Ideally, the image should include a near-infrared channel, which 
is known to differentiate dead and living vegetation well. The rest of this 
section explains the instantiation of various components of the energy 
term, the strategy for exploring the solution space using the neighbor-
hood operator, as well as an initialization scheme based on detecting 
lines using the sample consensus method. An overview of the entire 
processing pipeline is depicted in Fig. 3. 

4.1. Fully convolutional networks 

Fully convolutional networks (FCNs) are a class of convolutional 
artificial neural networks (CNNs) designed for dense semantic segmen-
tation of raster images. As opposed to classical CNNs that are used pri-
marily for image (sparse) classification (i.e. assigning a single label to an 
entire image or patch), FCNs do not possess fully connected layers, 
which makes them independent of the input image size (Long et al., 
2015). FCNs primarily consist of convolutional/transposed convolu-
tional filters as well as pooling layers, organized into two symmetrical 
paths. The encoder path downsamples the original image into mean-
ingful features by means of convolutional filters and pooling operations, 
whereas the upsampling path aims at decoding these features into a full- 
sized output map using transposed convolution operations. The final, 
topmost upsampling layer of the network is fed into a softmax operator, 
producing per-class posterior probabilities at each pixel and enabling 
end-to-end training with a logistic loss function. A classic FCN archi-
tecture which attained widespread use across various applications 
(Akeret et al., 2017; Dong et al., 2017) is the U-net (Ronneberger et al., 
2015), where upsampling layers are augmented with feature maps from 
the downsampling path at the corresponding resolution, to provide more 
context information. The architecture of a classic U-net is depicted in 
Fig. 4. It should be noted that due to the handling of image borders in the 
convolution operation, a decrease in image size occurs at each con-
volutional filtering layer in both the downsampling and encoding 

Fig. 3. Overview of the processing pipeline for delineating individual stem polygons using multiple active contour evolution. The input CIR image undergoes se-
mantic segmentation using the U-net, and the fallen stem probability map is partitioned into high-probability connected components. Next, the model shape positions 
and dimensions are initialized based on sample consensus line segmentation. Finally, the model shape configuration is optimized using simulated annealing, under 
consideration of the shape and collinearity models learned from labeled training data. 
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branches. This results in the output network layer having smaller di-
mensions than the original input image. To process input images of 
arbitrary size, a tiling strategy must therefore be employed, where input 
windows for subsequent applications of the U-net overlap by the margin 
derived from the difference between input and output layer shapes (see 
Ronneberger et al. (2015) for details). 

4.2. Image intensity prior 

In the role of the image intensity prior Pi(C|I) for our target class of 
fallen trees, we utilize the U-net deep neural network 4.1 in a binary 
classification setting. The original architecture is easily adaptable to the 
variable number of input channels Nc. The per-pixel posterior object 
class probabilities conditioned on the image pixel intensities (i.e. Pi(C|I)) 
are obtained directly from the semantic segmentation. We subsequently 
apply the marching squares algorithm (Lorensen and Cline, 1987) to 
derive contours of q-level supersets of the probability image. This results 
in a set of high-probability polygons, possibly consisting of multiple 
fallen trees and non-class objects or noise. Since the best known geo-
metric algorithms used for calculating polygon intersections have a 
worst-case computational complexity proportional to the product of 
their vertex counts in the general (non-convex) case (Nievergelt and 
Preparata, 1982), we apply the contour simplification algorithm by 
Douglas and Peucker (1973) (parameterized by the max. simplification 
distance ∊d) to the polygons, resulting in the final set S defined in Section 
3. 

4.3. Shape generator 

As the shapes of fallen stems are well approximated by rectangles, we 
utilize a simple shape generator fs(α) parameterized by two scalars α =

[a,b], which produces a rectangle with side lengths a, b centered at the 
origin of the coordinate system, oriented parallel to its axes (i.e. in 
standard position): 

fs(a, b) = [(−
a
2

; −
b
2
), (

a
2

; −
b
2
), (

a
2

;
b
2
), (−

a
2

;
b
2
)]

fs(a, b; θ = [xc, yc, ρ]) = Rρfs(a, b) + Txc ,yc

(7)  

The rigid transformation parameters θ consist of the center position (xc,

yc) translation T and an in-plane rotation R by angle ρ. 

4.4. Energy components 

Here we provide details about component potentials of the energy 
function (Eq. 1). Aside from the 3 standard potentials defined in Section 
3, we introduce an auxiliary collinearity potential to help prevent the 
fragmentation of object detections into multiple collinear parts. 

4.4.1. Data fit and overlap terms 
We utilize the aforementioned (Section 3.3) second-order inclu-

sion–exclusion principle based formulation to approximate the set dif-
ference cardinalities ϕ⧹τ, τ⧹ϕ by appropriate pairwise intersections. 
Since the model polygons have a constant dimension of 4 vertices, the 
computation of any pairwise intersection of model polygons i and j,
fs(αi

⃒
⃒θi) ∩ fs(αj

⃒
⃒θj) may be done in constant time, whereas the compu-

tational complexity of intersecting any fs(αi
⃒
⃒θi) with a high-probability 

contour si ∈ S is linear in the number of vertices forming si (Nievergelt 
and Preparata, 1982). Additionally, we modify the generic overlap po-
tential Eo (Eq. 3) to include a dependency on the angular difference in 
orientations between the model shapes: 

Eo

(
i, j
)
= e

− (ρi − ρj)
2

2σ2
o |fs

(
αi|θi

)
∩ fs

(
αj|θj

)
| (8)  

This reflects the model’s capability to allow non-parallel, crossing 
shapes to overlap without being penalized, as they most likely do not 
correspond to the same object (fallen stem). 

4.4.2. Shape prior 
We utilize a shape prior model in the form of a kernel density esti-

mator defined on the shape coefficients α = [a, b], based on a set of 
training rectangle shapes ST = {αk}: 

Ps

(

α
)

=

⃒
⃒
⃒H|

− 1/2

|ST |

∑n

k=1
K

(

H− 1/2

(

α − αk

))

(9)  

In the above, the bivariate Gaussian kernel is applied in the role of K, 
whereas the bandwidth matrix H is determined via the plug-in selection 
method of Wand and Jones (1994). A sample shape model derived from 
part of our reference shapes is depicted in Fig. 5. 

4.4.3. Collinearity prior (auxiliary potential) 
While the overlap penalty will discourage the formation of highly 

overlapping model shapes, there is still a possibility of segmenting a 
single tree stem as a sequence of nearly-collinear parts (see Fig. 6). To 

Fig. 4. Architecture of a 3 layer U-net for binary classification of 3-channel 
images. At level k, the layers undergo convolution with a series of 3x3 filters, 
producing 2kF feature maps. The initial size D0 of the input image is approxi-
mately halved at each downsampling layer, an approximately doubled in each 
upsampling layer (up to border removing convolutions). The final layer is ob-
tained by a 1x1 convolution with the top-level upsampled feature layer, and is 
subsequently fed into the softmax operator to derive class posterior 
probabilities. 

Fig. 5. Sample kernel density estimator model of joint stem length/width 
probability based on reference labeled polygons. 
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mitigate this, we introduce an auxiliary pairwise collinearity potential 
Ec =

∑
i,jEc(i,j), which penalizes highly collinear shapes located in close 

proximity with each other. Here, we define Ec(i, j) = logPeq(fs(αi
⃒
⃒θi),

fs(αj
⃒
⃒θj)) as the log-probability Peq of the two shapes i, j belonging to the 

same stem. In practice, we use the output of a probabilistic classifier (e.g. 
logistic regression) acting on differential features derived from the 
shapes’ locations (angular deviation of orientations, mean average dis-
tance of central axes). This is in analogy to the object similarity function 
applied to graph cut segmentation of stem parts into individual fallen 
trees defined in our prior work (Polewski et al., 2015). However, the log- 
probability contributes positive values to the energy for each detected 
collinear shape pair, thereby biasing the model away from such states 
and encouraging a merge operation of the interacting shapes. 

4.5. Initialization with sample consensus 

We initialize our model with a set of line segments automatically 
detected using sample consensus (SAC) methods (Fischler and Bolles, 
1981) within the binarized probability image Pi(C|I) obtained from se-
mantic segmentation (see Section 4.2). The inlier threshold for dsac SAC 
is set to the maximum expected width of a fallen stem (expressed in 
pixels). We only allow line segment hypotheses having a minimal length 
lsac, again derived from the minimal length of a tree stem we expect to 
find. This segment length is measured as the length of the interval of 
inlier pixel projections onto the respective model line. We also impose a 
minimum number of inlier points nsac for valid hypotheses. The whole 
scene is processed iteratively, greedily picking the highest-inlier hy-
pothesis until there are no valid hypotheses left. We expect to discover 
an overabundance of line segment hypotheses, partially covering the 
vast majority of true stem segments within the scene (see Fig. 7). Each 

accepted SAC hypothesis becomes an initial model shape, with the 
length li0 and position ti

x,0, tiy,0 / orientation ρi
0 inherited from the SAC 

line and a default assigned width. It is up to our energy formulation to 
eliminate redundant model elements, determine true dimensions of each 
object, and improve delineation of individual stem boundaries. 

4.6. Efficient evaluation of neighboring solutions 

As our fallen tree detection pipeline is designed for processing high- 
resolution nadir-view aerial imagery, it seems reasonable to quantize 
some size and position parameters at the ground sampling distance 
(GSD) of the input image, i.e. the finest level of detail available within 
the image. Given the elongated shape of our target objects (fallen tree 
stems), this quantization can yield a significant reduction of some pa-
rameters’ domains. Specifically, assuming a typical GSD of high- 
resolution aerial imagery of 5–10  cm, and the diameter of fallen 
stems bounded by 70  cm, the width parameter of the generated rect-
angle would only admit a small number (7–14) of possible values. For 
this reason, we restrict the elements a, b of the shape coefficient vector α 
and to the integer domain, representing the number of pixels at the 
original image resolution. The rectangle length and width a, b are 
additionally equipped with their own lower/upper bounds [alo; ahi],

[blo; bhi] based on the image resolution and the expected maximum/ 
minimum stem dimensions. The lower bound blo of the width is set to 
zero, which allows the model to ’disable’ a particular, redundant shape 
altogether and prevent it from contributing to the energy function 
(through zero overlap with any other polygons). Additionally, we 
impose restrictions on the location of the centers tix, ti

y for every shape i 
separately, based on the centers of their SAC line segment initializations 
ti
x,0, tiy,0 (see previous section). The center of the model shape tix, ti

y must 

be located within a rectangle of length li0 oriented according to the initial 
SAC angle ρi

0 and having a width w0 which is a parameter of our method 
(see Fig. 8). We introduce these constraints in order to avoid drifting 
away from the initial SAC solutions into poor regions of the solution 
space where no overlap of model objects with high probability level- 
supersets of the image would exist and hence loss of gradient would 
occur. The optimization method of choice, simulated annealing, is sus-
ceptible to this kind of behavior during the initial phases of the mini-
mization process, where the temperature parameter remains high and 
even poor moves which deteriorate the solution quality continue to be 
accepted. 

4.6.1. Solution altering moves 
Consider the state Ωk of the solution at iteration k of the optimization 

process, consisting of all shape and rigid transformation parameters 
concatenated into a single vector: Ωk = (ωk

i = (αk
i , θ

k
i )) (see Section 3.1). 

Fig. 6. (a) Color infrared image of forest scene with fallen stems. Two long 
stems are marked with green outlines. (b) Sample detection result for the two 
stems over posterior class probability image of same scene. Due to occlusions, 
the stems are fragmented and discontinuous within the probability map, which 
causes the energy function to prefer multiple disconnected collinear fragments 
over a single polygon covering the full length of the stem. 

Fig. 7. Line segments discovered using an iterative sample consensus (SAC) 
method. Although most target class pixels are covered by at least one SAC line, 
the method usually overestimates the true number of stems due to the vari-
ability of stem width distributions and the resulting difficulty in defining a 
single inlier threshold appropriate for all cases. 

Fig. 8. Probability image with detected initial sample consensus hypotheses 
(orange lines). Each line is surrounded by its center constraints polygon (cyan 
boxes). The evolution of the model shape associated with the given hypothesis 
line is constrained to maintain the center of the shape within the corresponding 
box at all times. 
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To generate a new candidate state Ωk+1 from Ωk, we designed the 
following solution altering moves, acting on a random shape ωk

u:  

i length/width: add/subtract a random integer bounded by δl, δw 
respectively to the length/width of shape u  

ii angle: add/subtract a random real number bounded by δρ to the 
angle ρu related to shape u’s orientation  

iii location (along axis): shift the center of shape u along its current axis 
by a random number bounded by δt,ax  

iv location (arbitrary): shift the center of shape u by an arbitrary 
random 2D vector, the components of which are bounded by δx,δy 

v merge/absorb: for a collinear shape ωk
v , extend the shape u by pro-

jecting the vertices of both shapes onto the current axis of shape u 
and adjusting its length and center point such that u contains all the 
projections. Also, disable the contributions of shape v to the overall 
energy by setting its width to zero 

The selection of the move to apply is based on a uniform random 
choice, where the merge/absorb move is only considered if the proba-
bility Peq of two shapes belonging to the same object is above a threshold 
value (see Section 4.4.3). Moves (i)-(iv) are of a local nature in the sense 
that only the model shape u changes. To calculate the new energy, we 
only need to perform a series of constant-time rectangle intersection 
computations between u and the remaining shapes, as well as one or 
more intersection calculations between u and the high-probability object 
contours s ∈ S, linear in the respective vertex counts. The values of the 
remaining model shape and image contour intersections remain un-
changed and can be cached as described in Section 3.3. In case of move 
type (v), a similar technique can be applied, because while technically 
two shapes are altered, only the ’absorbing’ shape u needs to have its 
intersections recalculated since shape v becomes an empty contour 
whose intersection with an arbitrary polygon yields the empty set. 

5. Experiments and results 

In this chapter, we describe the source imagery, target training and 
test areas, reference data, evaluation strategies, and the details of our 
experimental setup used to evaluate the proposed dead tree delineation 
framework against a baseline method. We also list the principal nu-
merical results. 

5.1. Data acquisition 

For validating our method, we utilized aerial imagery from the 
Bavarian Forest National Park, situated in South-Eastern Germany 
(49∘3′19′′ N, 13∘12′9′′ E). The Bavarian Forest lies in the mountain 
mixed forests zone consisting mostly of Norway spruce (Picea abies) and 
European beech (Fagus sylvatica). From 1988 to 2010, a total of 5800  ha 
of the Norway spruce stands died off because of a bark beetle (Ips 
typographus) infestation (Lausch et al., 2013). Color infrared images 
were acquired in the leaf-on state during a flight campaign carried out in 
June 2017 using a Leica DMC III high resolution digital aerial camera 
with a nadir across track field of view of 77.3◦ (see Leica (2017) for the 
product sheet). Multiple multispectral color cameras were utilized to 
form composite images, which had a resolution of 14592 x 25728 pixels 
with a virtual pixel size of 3.9 μm on the CMOS sensor. The mean above- 
ground flight height was ca. 2879  m, resulting in a pixel resolution of 
10  cm on the ground. The flight campaign took place between 10:30 
and 13:25, with the sun’s position traversing the range 49◦-64◦-35◦. The 
images contain 3 spectral bands: near infrared (spectral range 
808–882  nm), red (619–651  nm) and green (525–585  nm). All digital 
CIR images were radiometrically corrected by using optimal camera 
calibration observations, transformation parameters and ground control 
points. The procedures were conducted in the program system OrthoBox 
(Orthovista, Orthomaster) of the company Trimble/INPHO. 

5.2. Reference data 

Two separate regions of the National Park were used in this study 
(Fig. 9). We manually labeled individual stems forming large groupings 
of fallen trees visible in the high-resolution aerial imagery (Fig. 10). We 
only considered stems with a minimal length of 2  m. In Region A, a total 
of 213 single stem polygons were labeled. These polygons formed the 
basis for training the semantic segmentation component (U-net, see 
Section 5.4.1). Additionally, we used Region B, disjoint from Region A, 
to derive a total of 730 fallen tree polygons distributed across 3 test areas 
(Fig. 9). We took care to mark all visible fallen stems in each respective 
area to enable a fair evaluation. The areas B1, B2, and B3 are ordered by 
an increasing, subjective degree of segmentation difficulty. The first test 
area (B1) comprises 157 fallen stems and a number of standing dead 
trees in a state of advanced decay (Fig. 9b), distributed over an area of 
140 x 70 m2. The fallen trees are often Area B2 is slightly larger with 
dimensions of 140 x 70 m2, but contains significantly more stems with a 
count of 218. It contains some visually more challenging scenarios of 
many stems intersecting at various angles. Finally, area B3 (140 x 107 
m2) is the most challenging among the test plot, with 355 fallen stems 
and difficult scenarios of many stems forming complex interactions. A 
particularly dense region within area B3 is depicted in Fig. 12. 

5.3. Evaluation criteria 

We utilize two classic measures, correctness (also known as preci-
sion/specificity) and completeness (recall/sensitivity) to quantify the 
detection and segmentation results. We instantiate these measures in 
two complementary settings: (i) polygon level and (ii) centerline level. 
In both scenarios, correctness is conceptually defined as the ratio of 
detected objects which may be linked to reference stems, whereas 
completeness refers to the converse: the ratio of reference stems which 
have a detected counterpart. The exact matching criteria for the polygon 
versus the line case are listed below. 

5.3.1. Polygon level 
This version of the evaluation criteria is used for comparing the 

polygons delineated by our method versus the manually created refer-
ence polygons. To consider a detected polygon d as matched, we require 
that there exist a reference polygon r such that |d ∩ r|/|d| > 0.5, i.e. more 
than half the area of d must be covered by the reference. The matching 
criterion for a reference polygon r ′ is the existence of one or more 
detected polygons d′

1,…, d′
Q such that more than half of the area of r ′ is 

covered by the set-theoretic union of the detections, i.e. 
|r ′ ∩ ∪id′

i|/|r ′| > 0.5. The measure is asymmetrical to account for the fact 
that some fallen stems marked as whole within reference data may be 
fragmented into multiple parts by shadows within the image, thereby 
making detection with a single contiguous polygon unlikely. Also, our 
reference stems are constructed in such a way that collinear polygons 
representing the same physical objects do not occur, therefore it’s not 
valid for a detected shape to be matched with more than one reference 
object. We report the mean IoU values on matched reference stems for 
relevant experiments. 

5.3.2. Line level 
Since the baseline method for comparison (i.e. sample consensus line 

detection) does not produce polygons, we introduce the line-based 
evaluation for the sake of fairness. Similar to the polygon case, we 
perform pairwise comparisons between line segments extracted from the 
reference and detected polygons. The segments for the reference poly-
gons are derived from the centerlines of their oriented bounding boxes, 
whereas for the detected rectangles they are simply the centerlines 
parallel to the longer rectangle edge, clipped to lie within the shape. To 
determine a match between two segments, we adapt the 3D matching 
criterion from our prior work concerning detection of fallen stems in 
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point clouds (Polewski et al., 2015) to the 2-dimensional case. Let r→, d
→

denote, respectively, the reference and detected line segments which are 

candidates for matching. We consider r→ matched with d
→

if and only if 
the following 3 criteria are met (see Fig. 13):  

• the angular deviation between r→, d
→

is below 5∘  

• the mean projected distance between r→, d
→

is below 35  cm, or half- 
width of the average stems we expect to encounter  

• the projection of r→ onto d
→

must have a minimum length of 60%⋅
⃒
⃒
⃒ d
→⃒⃒
⃒

5.4. Experimental setup and results 

We performed a number of computational experiments to determine 
both the absolute performance of the entire processing pipeline, its 
relative performance versus a sample consensus baseline, as well as the 
influence of its components on the detection quality. To facilitate 
computations and enable concurrent processing, each high-probability 
polygon obtained from the U-net semantic segmentation (Section 4.2) 
is considered independently. In all experiments, the data fit coefficient 
γd was kept constant at log∊,∊ = 1e − 6. Moreover, the overlap potential 
Eo is measured in the same units (i.e. polygon area) as the data fit term, 

therefore we also set γo = γd to maintain the same semantics of an area 
unit in both potentials. The setting of ∊ assumes that the target class 
probability of pixels outside and inside the selected image regions is 
respectively 1e − 6,1 − 1e − 6. In fact, all three of the quantities Ed,Es, Eo 
may be interpreted as (log-) probabilities, and we make use of this fact to 
define a simple potential normalization scheme. This is to promote 
interpretability of the energy coefficients γ, such that potentials having 
similar coefficient values will also exert a similar influence on the energy 
function. In particular, we divide each potential by the cardinality of the 
set it was integrated over, so that Ed is divided by the area of the 
currently processed high-probability polygon s ∈ S, Es is normalized by 
the number of evolving shapes M′, whereas the normalization constant 

for Ec is the number of unordered pairs 
(

M′

2

)

. 

The simulated annealing was carried out with 16 random restarts, 
picking the result with the best objective function value. The number of 
inner iterations per temperature level was 15000, and the cooling factor 
was set to 0.9. The minimum and maximum accepted stem length was 
2  m and 30  m, respectively. Detected polygons with lengths outside this 

Fig. 9. (a) Training and validation regions (in green) chosen within the Bavarian Forest National Park (boundaries shown with dashed cyan line). The coordinates 
and true north arrow are with respect to the coordinate reference system DHDN/3-degree Gauss-Krüger zone 4 (EPSG:31468). Background is color infrared image 
with ground sampling distance of 10  cm. Region A was used exclusively for training, whereas region B was the basis for validation. (b) a depiction of test area B1, 
containing a mixture of lying dead trees, standing dead trees, and living vegetation. 

Fig. 10. (a) Sample color infrared (CIR) image containing fallen stems. The 
ground sampling distance of 10  cm is sufficient to delineate each individual 
stem with high precision (b). 

Fig. 11. (a) an image patch for U-net training. left: original CIR image, right: 
pixel mask showing target class (magenta) and non-class (blue) pixels. The 
black regions within the image do not contribute to the training loss function, 
which enables the learning to focus more on the boundary between the stem 
and its surroundings. (b) Per-pixel probability of belonging to a fallen stem, 
obtained from semantic segmentation with the trained U-net. 
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interval were discarded. 
To gain a deeper insight into the experimental results, we partitioned 

the set of reference trees per plot into two categories, based on their 
overlap with other reference polygons. Standalone objects not inter-
secting any other stem were considered ’simple’, whereas stems 
belonging to groupings of mutually overlapping polygons were catego-
rized as ’complex’. The percentages of reference trees classified as 
’complex’ in the test areas B1, B2, and B3 were respectively 53%, 59%, 
and 69%. 

5.4.1. Training the U-net 
We utilized the manually marked stem polygons to train an instance 

of the 3 layer U-net depicted in Fig. 4, with additional dropout and batch 
normalization layers. The implementation provided by Akeret et al. 
(2017) was adapted to our data. The input image size D0 was 200 pixels, 
and the number of features (convolutional filters) at top level was set to 
F = 32. Since stems are elongated thin structures, usually the proportion 
of pixels occupied by them is small compared to the background. 
Therefore, we only used pixels lying within a small 4-pixel band around 
the marked stem polygons in the role of negative class examples. This 
was to enhance the class balance and also encourage the learning pro-
cess to focus on learning the boundaries between stems and their im-
mediate surroundings instead of random background patterns 
(Fig. 11a). The resulting class label distribution was imbalanced with 
31% of pixels representing fallen stems. A sample result of the proba-
bilistic output obtained from semantic segmentation with the trained U- 
net is shown in Fig. 11b. We used the Adam algorithm (Kingma and Ba, 

2017) to perform stochastic gradient optimization of a binary logistic 
objective until convergence. Standard metaparameters for the Adam 
optimizer were assumed (α = 0.001,β1 = 0.9,β2 = 0.999). The dropout 
rate was 50%, whereas the training minibatch size was set to 15. 

5.4.2. Sensitivity analysis for energy coefficients 
In the first experiment, we varied the energy coefficients γs, γc cor-

responding respectively to the shape and collinearity energy terms Es, Ec 
(Sections 4.4.2, 4.4.3). Thanks to the normalization scheme described 
above, it suffices to investigate coefficient values of the order of 
magnitude 1. We introduced 4 levels of coefficient magnitude: (0, 0.1,
0.3, 0.5), corresponding to labels of L = off,low,moderate,high. Perfor-
mance metrics were collected for the following combinations of (γs,γc) :

{(off, off)} ∪ {{(off, x), (x, off), (x, x)} : x ∈ L}. For the polygon-based 
evaluation, we recorded the correctness and completeness as per Sec-
tion 5.3.1 as well as the mean matched intersection-over-union measure. 
In case of line-based evaluation, the metrics saved were (i) the cor-
rectness and (ii) a version of completeness which considers only refer-
ence stems which were covered by detected segments (in the projection 
sense, see Fig. 13)) to a degree of at least 65%. The results are sum-
marized in Table 1. Also, Figs. 16–18 visualize the detection results of 
the best performing parameter combinations for the 3 target areas. On 
the polygon level, a correctness above 0.9 was reached for all plots, with 

Fig. 12. Dense region within plot B3, where many stems are concentrated on a 
relatively small area. 

Fig. 13. Computing the average projection distance and cover between two 

line segments d
→
, r→. The average distance is taken over a discrete set of pro-

jected points (orange distance markers). Dashed gray lines indicate the region 
of d covered by the projection of r onto d. 

Fig. 14. Detection completeness results for the 3 test plots - comparison be-
tween the sample consensus baseline (SAC) and our multiple active contour 
(MAC) method. The horizontal axis indicates the ratio of the reference tree’s 
length which is covered by the projection of its matched detected line. A point 
(p, q) on the plot is interpreted as q of all reference trees having a valid match 
which covers at least p of their length. 

P. Polewski et al.                                                                                                                                                                                                                                



ISPRS Journal of Photogrammetry and Remote Sensing 178 (2021) 297–313

308

completeness values between 0.77 and 0.82. The highest attained 
intersection-over-union was 0.59, 0.55, and 0.58 respectively for plots 
B1, B2, B3. The plot exhibiting the highest completeness was also the 
one with the highest percentage of ’simple’ (single component) refer-
ence trees. Adjusting the shape and collinearity term coefficients yielded 
an improvement in precision/recall of 1/1, 2/4, and 0/3 percentage 
points (pp) respectively for plots B1, B2, B3. Moreover, all results with 
the highest attained correctness were associated with a ’moderate’ or 

higher shape term coefficient. In contrast, varying coefficients did not 
influence the line level evaluation much, with precision/recall gains of 
1/0, 1/2, and 0/1  pp. Overall, relative to the polygon level, the line 
evaluation resulted in slightly lower values for precision at 88–89 and 
completeness of 75–78. 

5.4.3. Comparison to baseline (sample consensus) 
The purpose of this experiment was to compare the line-based 

detection quality to the sample consensus baseline. To this end, we 
executed the random sample consensus (RANSAC) based line segment 
detection within the high-probability components from U-net semantic 
segmentation (Section 4.5), and considered the SAC line segments as the 
final detection result. To account for randomness and to equalize the 
chances versus the compared-to method, the SAC computations were 
repeated a number of times equal to the size of checked coefficient 
combination set in the first experiment, and the best result was noted. 
We then picked the best-performing coefficient combination per plot as 
per Table 1 and performed a more in-depth comparison of our method 
and the SAC result using more metrics. Notably, we analyzed 
completeness at different thresholds of stem coverage as well as cor-
rectness of detecting ’simple’ stems (which occupy their individual input 
polygon, without intersecting other trees) versus ’complex’ stems 
(which are part of a complex aggregate of multiple overlapping objects). 
The curves showing detection completeness as a function of reference 
stem projected coverage ratio are depicted in Fig. 14, whereas the 
remaining metrics are given by Table 3. In terms of overall precision 
(correctness), our method attains a lead of 4  pp consistently across the 
test plots. However, considering the complexity of the reference stems, 
this difference is extended to 5–7  pp for complex stems and reduced to 
0–3  pp for simple (single component) stems. The detection complete-
ness (recall) follows a similar trend, with our method outperforming the 
baseline by up to 5  pp for simple and up to 7  pp for complex stems. Note 
that the advantage of our method becomes more clear at coverage levels 
beyond 60%, whereas for low coverage levels, both methods perform 
similarly. 

5.4.4. Comparison to semantic segmentation baseline - logistic regression 
This experiment involved replacing the high-quality semantic seg-

mentation probability map from the U-Net with a basic logistic regres-
sion model trained only on the channel intensities. The same data was 
used for training both models. No higher-level textural features were 
used in order to determine the benefit of using a state-of-the-art neural 

Fig. 15. Comparison of posterior probabilities from semantic segmentation by 
(a) logistic regression based on simple channel intensities and (b) U-net. The LR 
baseline tends to thin out the stems, often reducing them to sparse sets of pixels. 

Table 1 
Sensitivity analysis results for the influence of the shape and collinearity energy potentials onto the aggregate energy. Precision and recall of the detection are given for 
both the polygon- and line-level evaluation. Four levels of influence are investigated for each potential, where ′off ′,′ low′

,′ moderate′,′ high′ correspond respectively to 
term coefficient values of 0, 0.1,0.3,0.5 within the aggregate energy. The energy term coefficient configurations yielding the highest precision (correctness) are 
emphasized with bold font (recall value breaks ties).   

Collinearity coefficient  

Polygon level Line level  
Off Low Mod. High Off Low Mod. High 

Precision/recall P R P R P R P R P R P R P R P R 

Shape coefficient                 
Plot B1                 

Off .90 .81 .90 .80 .91 .82 .90 .80 .88 .76 .89 .74 .89 .76 .88 .75 
Low .90 .81 .90 .82 - - - - .88 .75 .88 .77 - - - - 

Mod. .90 .82 - - .91 .82 - - .89 .75 - - .88 .76 - - 
High .90 .82 - - - - .89 .80 .87 .75 - - - - .86 .73 

Plot B2                 
Off .91 .73 .93 .73 .92 .74 .92 .72 .87 .73 .88 .73 .88 .75 .87 .73 

Low .92 .75 .92 .74 - - - - .87 .75 .87 .73 - - - - 
Mod. .93 .75 - - .92 .75 - - .87 .74 - - .87 .74 - - 
High .91 .77 - - - - .91 .76 .87 .74     .87 .73 

Plot B3                 
Off .93 .76 .93 .77 .93 .78 .93 .78 .89 .77 .89 .78 .88 .79 .89 .78 

Low .93 .77 .92 .78 - - - - .88 .76 .89 .78 - - - - 
Mod. .93 .78 - - .91 .78 - - .88 .76 - - .88 .78 - - 
High .93 .79 - - - - .93 .79 .87 .75 - - - - .87 .77  
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network for semantic segmentation. The pixel-level classification accu-
racy and F1 score on a hold-out validation set for the U-Net were 
respectively 0.94 and 0.91. The cross-validated overall accuracy and F1 
score for the logistic regression baseline attained values of 0.80 and 
0.62. We then applied the logistic regression model to the images of the 
test area, obtaining maps of posterior class probabilities. Polygons of 
high probability regions were subsequently extracted and our multi- 
contour segmentation was executed. Although the per-pixel classifica-
tion metrics for the logistic regression were satisfactory, the object-level 
(both line and polygon) performance appeared to break down. The 
precision degraded to levels of 0.76–0.83, and the recall experienced an 
even more extreme drop to levels of 0.15–0.27. In Fig. 15, the semantic 
segmentation of the same area by the LR baseline and by the U-Net is 
shown. It can be seen that within the LR probability image, many stems 
are missing or greatly ’thinned out’, i.e. represented by only a sparse set 
of pixels. 

5.5. Execution time 

The training process of the U-net on an Nvidia GeForce GTX 1080 Ti 
graphics card (with CUDA support) took ca. 7.5  h, after which time 
convergence of the learning process was achieved. The prediction time 

of the U-net on new data was measured in seconds and negligible 
compared to the optimization time of the multi contour objective. This 
optimization was carried out on a desktop computer equipped with 
128  GB of RAM and an Intel XEON E5-1680 v4 CPU running at a fre-
quency of 3.4  GHz, consisting of 8 cores. We used our own imple-
mentation of the simulated annealing metaheuristic algorithm written in 
the C++ programming language. The mean execution times of the 
inference/optimization on the respective test areas (averaged over 
different choices of the objective function parameters γs,γc) are given in 
Table 2. 

6. Discussion 

Overall, our method was successful in providing a good quality 

Fig. 16. Results of fallen stem segmentation for plot B1 (polygon level). (a), (b) 
depict respectively the reference and detected polygons, with semantic seg-
mentation posterior probability as background. Red/green colors indicate a 
polygon mismatched/matched with a counterpart (above 50% area overlap). 
(c) original false color CIR image with indicated mismatched reference (cyan) 
and detected (yellow) polygons. 

Fig. 17. Results of fallen stem segmentation for plot B2 (polygon level). (a), (b) 
depict respectively the reference and detected polygons, with semantic seg-
mentation posterior probability as background. Red/green colors indicate a 
polygon mismatched/matched with a counterpart (above 50% area overlap). 
(c) original false color CIR image with indicated mismatched reference (cyan) 
and detected (yellow) polygons. 
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detection result for all 3 test plots of multi-level scenario complexity, 
both in terms of agreement of the extracted and reference polygons (IoU 
between 0.55–0.59), and the percentage of matched reference and 
detected polygons (correctness of 0.91–0.93, completeness 0.78–0.82). 
As expected, the shape prior turned out to be more helpful in case of 
polygon level evaluation, because the line level evaluation is less sen-
sitive to changes in detected polygon width and small changes in 
orientation. Despite the simplicity of the utilized shape representation 
(rectangles parameterized by width and length), the energy benefited 
from an explicit shape model with a gain of up to 4  pp in completeness 
(while maintaining correctness). We hypothesize that a more complex 

shape model could show even higher gains. The test plot B1, which 
benefited the least from the additional energy terms, also had the lowest 
percentage of complex (intersecting) reference stems, confirming the 
intuition that the shape and collinearity priors are mostly useful for the 
complex scenarios. 

It is interesting to note that plot B1, which can be considered the 

Fig. 18. Results of fallen stem segmentation for plot B3 (polygon level). (a), (b) depict respectively the reference and detected polygons, with semantic segmentation 
posterior probability as background. Red/green colors indicate a polygon mismatched/matched with a counterpart (above 50% area overlap). (c) original false color 
CIR image with indicated mismatched reference (cyan) and detected (yellow) polygons. 

Table 2 
Execution times of simulated annealing based optimization of proposed multi 
active contour method on the 3 test areas. The shown values correspond to the 
mean execution time, standard deviation, and mean time for processing one 
stem per test area.   

Plot B1 Plot B2 Plot B3 

Mean exec. time [h] 3.95 6.68 13.46 
Standard dev. [h] 0.17 0.42 0.46 
Time per stem [s] 61 83 91  

Table 3 
Results of line-based evaluation - comparison between baseline sample 
consensus (SAC) and our multiple active contour (MAC) method. Shown are the 
precision (Pr.) on the whole data, for ’simple’ and for ’complex’ reference stems, 
as well as the total recall (Rec.) at 0.65 coverage of reference stems.   

Pr. (total) Pr. (simple) Pr. (complex) Rec. (total)   

Plot B1       
SAC .85 .82 .90 .70   

MAC .89 .85 .97 .76   
Plot B2       

SAC .84 .89 .79 .73   
MAC .88 .91 .84 .75   

Plot B3       
SAC .84 .88 .82 .74   

MAC .88 .88 .87 .79    

P. Polewski et al.                                                                                                                                                                                                                                



ISPRS Journal of Photogrammetry and Remote Sensing 178 (2021) 297–313

311

’easiest’, obtained the lowest precision score among the 3 test plots on 
the polygon level. This can be attributed to a relatively high number of 
standing dead tree stems within this plot (see Fig. 16c). These stems 
appear to be virtually indistinguishable from lying stems under the se-
mantic segmentation output of the U-Net. This is probably a conse-
quence of the network not being trained to distinguish standing dead 
trees from fallen stems. It is not clear whether this can be achieved solely 
based on monocular images without dense depth information. Aside 
from standing dead trees, other sources of false negatives may be linked 
to root plates as well as woody debris appearing to possess a similar hue 
within the CIR images as our target objects. 

A number of misdetections (unmatched reference trees) is once again 
associated with the posterior probability of the semantic segmentation 
from the U-Net. As visible on Figs. 16a, 17a, 18a, the missing stems are 
often fragmented into discontinuous chunks in the probability image, 
caused mostly by shadows and occlusions from other objects like shrubs 
or understory growth. Such discontinuities prohibit the energy function 
from enclosing the disjoint stem parts in a single detected polygon. This 
is associated with our method’s inherent tendency to exploit the con-
nectivity structure of the high-probability pixels, where each connected 
component is processed independently. Due to computational tracta-
bility considerations, for large scenes it is impractical to consider all 
connected components within one, simultaneous optimization problem. 
However, there are several alternative possibilities of alleviating this 
problem. First, explicitly adding examples of shadowed fallen stems to 
the U-Net’s training set would help increase the continuity of the stems 
within the probability image. Second, out energy formulation could be 
altered to explicitly account for these discontinuous, collinear de-
tections. Finally, a post-processing step could be applied, where the 
detected polygons would be clustered together based on mutual distance 
and collinearity, for example using graph cut methods (Shi and Malik, 
2000). In our setting, the collinearity potential from Section 4.4.3 could 
be directly used in the role of the object similarity function. 

Comparison to the sample consensus baseline shows that the line- 
based detection can be improved by applying our energy function to 
the SAC candidates, both in terms of completeness and correctness. 
Moreover, our method yields higher gains for more complex scenarios of 
intersecting stems. In case of simple, single-component stems, sample 
consensus line fitting usually delivers good results and is difficult to 
significantly improve upon. Also, it appears that SAC is often able to 
provide low-coverage partial matching of the majority of stems present 
within the test area, but falls short of the task of precisely delineating 
their extents. It is for higher stem length coverages that our multiple 
active contour method, endowed with prior knowledge about the size 
and spatial conformation of fallen stems, is able to gain the most clear 
advantage. 

Our results show the importance of using a high-quality semantic 
segmentation method as a basis for the contour evolution. We believe 
that the performance degradation turned out to be so extreme because of 
the nature of the classified objects. Indeed the fallen stems are usually 
represented by objects of only a few pixels of width, and therefore the 
deformations caused by the lower-quality logistic regression semantic 
segmentation turned out to distort the appearance of stems in the 
probability image beyond recognition. It was nevertheless surprising 
that a ca. 20% drop in pixel-level accuracy resulted in a nearly 60% 
degradation in object-level recall. 

The relative execution times are consistent with our a priori ordering 
of the three test areas with respect to their difficulty. Indeed, the unit 
time required for processing one stem in Plots B2 and B3 is respectively 
33% and 50% larger compared to Plot B1 (see Table 2). The processing 
time is dominated by solving the multiple active contour evolution 
objective (via simulated annealing), with the semantic segmentation 
with the U-net as well as the sample consensus-based line segmentation 
contributing only a small fraction of time. In turn, the simulated 
annealing algorithm’s computational complexity can be traced back to 
the complexity of the move-making procedure, which is directly 

proportional to the number evolving model shapes as well as the number 
of points forming the connected component’s polygon (see Section 4.4). 
Therefore, a single connected component with a very complex boundary 
(e.g. Fig. 12) can dominate the processing time, especially if the initial 
sample consensus line segmentation results in many model shapes to 
evolve. The current processing times on a single machine are satisfactory 
for small and medium-scale applications of areas which are densely 
covered with fallen stems. However, in this study our primary focus was 
to attain high accuracy of the stem delineation and not as much to 
optimize the throughput of the computation. In particular, we did not 
conduct investigations into the minimal required random restarts of the 
simulated annealing runs, the number of iterations of each temperature, 
or the cooling schedule itself. We believe that there is potential to reduce 
the current execution times by at least tenfold once these meta-
–parameters are optimized. This would bring the unit cost of processing 
a single stem into the realm of several seconds, which would mean that 
an area containing 10,000 fallen stems could be processed within one 
day on a single machine. 

We believe that our study showed the advantage of using active 
contour evolution over generic line detection methods for the purpose of 
segmenting elongated structures such as fallen tree stems in high- 
resolution aerial imagery. To the best of our knowledge, it is the first 
study which (i) was based on more than 700 objects, (ii) provided both 
pixel-level as well as line-level detection metrics, and (iii) dealt with 
extremely complex overlapping stem scenes. The results show that a 
segmentation method which is informed on the shape and appearance of 
the objects it is trying to segment can improve performance especially in 
the case of complex scenes. A further advantage of our proposed method 
over off-the-shelf segmentation procedures is that most of the crucial 
parameters can be learned from training examples. However, it should 
be noted that our study had several limitations that should be addressed 
in future research. First, the presence of shadows and occlusions can be 
detrimental to the formation of connected components within the pos-
terior probability image, leading to partition of the same physical object 
into multiple, unrelated segmented objects. Moreover, the utilized 
rectangular representation of stems may be too simple in some cases, 
especially in the context of applying the method to more complex shapes 
aside from fallen stems. Also, our input data lacked 3D information, 
which led to confusion between fallen and standing trees in some cases. 
Finally, the meta–parameters of the simulated annealing optimizer were 
not tuned for efficiency of processing, which makes the current version 
of our software not applicable to large area processing. Nonetheless, we 
believe that the trainable nature of the key parameters makes our 
approach applicable to new, previously unseen areas given enough 
training data, without the need for manual parameter tweaking. 

Our results are very promising as we can count the number of fallen 
trees and determine the area covered by each tree very accurately from 
aerial imagery. Therefore, the proposed methodology will allow many 
applications in forest and conservation management. After severe dis-
turbances, our method allows a quick assessment of the number and 
distribution of fallen trees, which is necessary to plan salvage logging 
activities to harvest the timber and to prevent the spread of insects, such 
as the Norway spruce bark beetle Ips typographus. In the next step, the 
delineated polygons will be a basis for determining not only the number 
of the fallen trees, but also the amount of wood. This would make the 
information even more suitable for forest management, since from this 
value the operation of logging machinery and transportation can be 
planned accurately. For conservation management, our method will 
help to map the distribution and amount of deadwood in the ecosystem. 
This will allow to determine the best areas for conservation measures 
and to monitor the amount of lying dead wood in a given area to fulfil 
minimum requirements for maintaining biodiversity (Müller and Bütler, 
2010). Moreover, our method can also be used for research projects that 
need accurate information about the distribution of lying dead wood, 
such as long-term studies on carbon sequestration, the spatial arrange-
ment of forest regeneration, or animal movement. 
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7. Conclusions and outlook 

This work introduced a framework for segmenting multiple objects 
of a common type from imagery using a collection of evolving active 
contours, unified under an aggregate energy functional encompassing 
various aspects of the segmentation quality. In particular, along with the 
usual data fit term, our energy favors high-probability shapes as defined 
by an explicit shape model, and penalizes overlap of adjacent contours. 
The proposed approach makes use of state-of-the-art semantic segmen-
tation methods (e.g. U-net) to extract regions of the input image which 
are likely to contain realizations of target class objects. We then 
instantiated the framework in the context of fallen tree detection from 
high-resolution aerial color infrared imagery, by providing concrete 
shape parametrizations, a kernel density estimator-based shape model, 
as well as additional, domain-specific energy potentials. It was shown on 
3 test plots that our approach can achieve good segmentation perfor-
mance in terms of both polygon-based (intersection-over-union) and 
line-based quality metrics. It was found that using the proposed shape 
model improved the segmentation completeness at polygon level by up 
to 4  pp. As expected, the additional energy terms (collinearity and 
shape model) were mostly useful for complex aggregates of multiple 
overlapping stems, while their impact on isolated stem detection was 
minimal. 

Our investigation showed the critical importance of using a high- 
quality semantic segmentation method in case of thin, elongated ob-
jects such as fallen stems. The posterior probability map obtained from a 
simple baseline using channel intensities resulted in a breakdown of 
segmentation completeness, with many stems under-represented and 
fragmented in the probability image. The sufficient quality of the se-
mantic segmentation is a precondition for the successful application of 
our method. On the line level, the proposed energy-based segmentation 
method was compared to a sample consensus baseline. Although the 
energy functional evolves polygons (contours), an improvement in line- 
based metrics was also observed, with gains in both precision and recall 
up to 6  pp. 

Our method is a step towards automatically generating maps of 
downed wood in forests from aerial imagery. This information is of key 
importance in the success of environmental studies of forest ecosystems 
regarding faunal and floral biodiversity, soil quality, carbon sequestra-
tion, animal habitat modeling etc. Moreover, widespread accessibility of 
aerial imaging in forest management and research institutions makes 
our method applicable in practice for obtaining moderate to large area 
coverage of downed wood distribution given reasonable computational 
resources. 

An issue to be addressed in future work is associated with objects 
split by shadows or occlusions in the probability image, leading to 
fragmentations of stems into disjoint parts. For large scenes with hun-
dreds or thousands of objects, it would be computationally intractable to 
jointly consider all high-probability image regions within one optimi-
zation problem. Instead, a more feasible strategy seems to perform 
merging of the detected polygons as a post-processing step, e.g. using a 
graph-cut approach. Another natural direction for future work is the 
application of our framework to more complex object classes and asso-
ciated, richer shape models. Also, instantiating the framework in 3D 
using outputs from voxel-based deep semantic segmentation networks 
could be an interesting next step. 
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