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ABSTRACT:

The use of multispectral imagery for monitoring biodiversity in ecosystems is becoming widespread. A key parameter of forest
ecosystems is the distribution of dead wood. This work addresses the segmentation of individual dead tree crowns in nadir-view
aerial infrared imagery. While dead vegetation produces a distinct spectral response in the near infrared band, separating adjacent
trees within large swaths of dead stands remains a challenge. We tackle this problem by casting the segmentation task within
the active contour framework, a mathematical formulation combining learned models of the object’s shape and appearance as
prior information. We explore the use of a deep convolutional generative adversarial network (DCGAN) in the role of the shape
model, replacing the original linear mixture-of-eigenshapes formulation. Also, we rely on probabilities obtained from a deep fully
convolutional network (FCN) as the appearance prior. Experiments conducted on manually labeled reference polygons show that
the DCGAN is able to learn a low-dimensional manifold of tree crown shapes, outperforming the eigenshape model with respect
to the similarity of the reproduced and referenced shapes on about 45 % of the test samples. The DCGAN is successful mostly for
less convex shapes, whereas the baseline remains superior for more regular tree crown polygons.

1. INTRODUCTION

From an ecological perspective, monitoring the state and quant-
ity of coarse woody debris (CWD) is a crucial task due to its
role in forest biodiversity, nutrient cycles, and as carbon se-
questration (Harmon et al., 1986). It is well known that dead ve-
getation produces a distinct reflectance signature in the infrared
spectral band (Jensen, 2006), therefore remote sensing based
on passive optical sensors has been widely used for detecting
diseased and dead trees (Wang et al., 2007; Vogelmann, 1990;
Heurich et al., 2010; Polewski et al., 2016). Advances in op-
tical sensor technology have capacitated the widespread use of
high-resolution aerial images in large-scale forest inventories.
This opens up new possibilities for mapping dead vegetation
with unprecedented precision and spatial coverage. Although
the infrared spectral band is useful for detecting dead vegeta-
tion, there are still a number of challenges associated with ex-
tracting individual dead trees. First, there may be other objects
within the scene which possess a similar reflectance signature
(e.g. open ground patches, roads etc.). Also, the centimeter-
resolution aerial imagery reveals much more complexity in the
shape of dead tree crowns than was possible with the previous
generations of sensors. This calls for appropriately complex
shape models, capable of representing the entire range of the
tree crown variability. Finally, the interactions of adjacent dead
tree crowns can lead to the formation of complex aggregates
that are difficult to separate into individual trees.

Recently, convolutional neural networks (CNNs) have become
the vanilla standard for many classical computer vision tasks.
Dense semantic segmentation of raster imagery is particularly
well handled by fully convolutional encoder-decoder network
∗ Corresponding author

architectures such as the U-Net (Ronneberger et al., 2015). An-
other area where CNNs have achieved spectacular success is
generative modeling of image distributions pertaining to a par-
ticular domain. Generative adversarial networks (GANs) (Good-
fellow et al., 2014) are able to learn highly complex mappings
from a low dimensional latent space Z to the image manifold
X, such that sampling from Z induces a corresponding set of
samples from X. On the other hand, segmenting the scene into
individual objects remains a difficult and challenging problem
and an active area of research within the neural network and
computer vision community (Arnab and Torr, 2017; He et al.,
2017). Current state-of-the-art CNN based approaches suffer
from coarseness of feature maps as well as limited information
contained in the candidate object regions of interest, resulting
in degraded performance for small and multi-scale object local-
ization (Zhao et al., 2018).

We propose to combine the strengths of GANs and fully convo-
lutional networks within the energy minimization framework
of active contour segmentation (Cremers et al., 2007). This
mathematical formalism describes the evolution of a segmented
object’s contour within an image, partitioning the image into
regions inside and outside of the target object. The segment-
ation process may be endowed with prior information. Spe-
cifically, we utilize the probabilistic formulation of Cremers
and Rousson (2007), which admits explicit priors for the ob-
ject shape and appearance. However, we replace the original
linear eigenshape model of Tsai et al. (2003) with a deep con-
volutional GAN (Radford et al., 2016). Also, the target class
posterior probability output from a U-Net (Ronneberger et al.,
2015) is used in the role of the appearance prior instead of the
kernel density estimator models of intensity used by the authors
earlier. This is a modification of our prior work (Polewski et al.,
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2015), where simpler, non CNN-based priors were used. We
tested our approach on 200 polygons manually marked within
high-resolution color infrared (CIR) imagery from the Bavarian
Forest National Park. We evaluated the segmentation approach
enriched with CNN-based priors against the baseline method
with respect to both per-pixel similarity of the reference and
segmented polygons and more abstract shape similarity meas-
ures.

The rest of this paper is organized as follows. In Section 2, we
review previous work with the conceptually closest approaches
regarding both dead/diseased tree detection from multispectral
imagery and combining active contour segmentation with deep
learning approaches. Section 3 explains the general framework
of active contour segmentation and in particular the mechan-
isms of incorporating prior information. The next section deals
with the architecture of the applied GAN shape prior. We de-
scribe the computational experiment, source data and evalu-
ation metrics in Section 5, and in Section 6 we describe the
results and discuss them. In the final section we state the key
findings and conclusions of our work.

2. RELATED WORK

Several authors attempt segmentation and classification of in-
dividual dead or diseased trees from aerial infrared imagery.
Bhattarai et al. (2012) first apply a generic individual tree crown
segmentation, and subsequently classify each tree as either dead
or living based on multispectral features. More recently, Safonova
et al. (2019) used a CNN to assess the vitality of trees from aer-
ial RGB images. They used rectangular patches as the data unit
for classification. Näsi et al. (2018) report using hyperspectral
imagery for identifying dead and diseased trees. Their com-
parison between data acquired by means of an unmanned aerial
vehicle (UAV) versus aircraft-mounted sensors revealed that the
superior UAV ground sampling distance of 10 cm yields signi-
ficant improvements in detection accuracy. This bolsters our
working hypothesis that the increased image resolution trans-
lates to more information content relevant to the segmentation
task. The listed approaches share the characteristic of splitting
the dead tree segmentation problem into a generic tree crown
delineation step, followed by a classification phase. We are not
aware of any competing approaches which attempt to explicitly
model the dead tree shape and make use of it during the search
for dead trees, except our own prior work.

There also exists prior work on the topic of combining con-
volutional neural networks with active contour segmentation.
Marcos et al. (2018) proposed a framework utilizing CNNs for
learning the geometric prior parameters of an active contour
model in the context of single instance segmentation of urban
scenes containing buildings. They showed how the CNN train-
ing task can be cast as a structured learning problem, enabling
end-to-end training.

This work draws upon some ideas presented in (Wu et al., 2017),
where a GAN-like model was utilized to generate 3D objects
based on silhouette and surface normal information, but de-
coupled from the object’s texture/appearance. Also, in some
sense our work concerns the problem of inverting GAN mod-
els, i.e. finding a latent variable vector which leads to the gen-
eration of a given input object (e.g. image). This is also an
ongoing topic within the neural network community (Creswell
and Bharath, 2019).

3. ACTIVE CONTOUR SEGMENTATION

3.1 General setting

In the setting of image segmentation, let Ω ⊂ R2 be the image
plane, I : Ω → Rd a vector-valued image, and C an evolving
contour in the image I . We wish to find a contour C which
partitions the image ’optimally’ into two disjoint regions Ω1

and Ω2, such that the former represents the ’foreground’, or
part of the image located within C, and the latter represents the
background. The notion of optimality may be expressed in a
probabilistic fashion using the Bayesian rule:

P(Ω1,Ω2|I) ∝ P(I|Ω1,Ω2)P (Ω1,Ω2) (1)

Furthermore, the contourC uniquely identifies the partition Ω1,Ω2,
therefore the (log) probability of the partition given the image
data decomposes into a shape prior term and a data likelihood
term:

E(C) = −log(P(C|I)) = −log(P(I|C))− log(P(C))

= Eimg + Eshp

Eimg = −log(P(I|C)), Eshp = −log(P(C))

(2)

Assuming that region labellings are uncorrelated, i.e. P(I|Ω1,Ω2) =
P(I|Ω1)P(I|Ω2), and also that image values inside a region are
realizations of independent and identically distributed random
variables (Cremers et al., 2007), the image term becomes:

Eimg(C) = −
∫

Ω1

log f1(I(x))dx−
∫

Ω2

log f2(I(x))dx

= −
∫

Ω

1C [x] log f1(I(x))+

(1− 1C [x]) log f2(I(x))dx

(3)

In the above f1 and f2 denote the probability density functions
of the image values inside and outside the contour C (corres-
ponding respectively to the regions Ω1,Ω2), whereas 1C(z) is
the indicator function for the set Ω1 (i.e. interior of C). We can
further represent the generative pixel probability fi for region
Ωi in terms of the (discriminative) region label posterior:

fi(I(x)) = P(I(x)|x ∈ Ωi) ∝ P(x ∈ Ωi|I(x))P(x ∈ Ωi)
(4)

In the above, the probability of observing an image value I(x)
has been dropped as independent from the contour. Assum-
ing that the probability of an image element x belonging to the
foreground or background is not dependent of the position of x
within the image, we can drop the term P(x ∈ Ωi) and utilize
the class posterior within the image energy term (Polewski et
al., 2015), resulting in the familiar binary cross-entropy:

Eimg(C) = −
∫

Ω

1C [x] logP(x ∈ Ω1|I(x))+

(1− 1C [x]) log[1− P(x ∈ Ω1|I(x))]dx

(5)

3.2 Level-set segmentation

In the level-set formulation, the contourC itself is not explicitly
evolved. Rather, it is assumed that the contour is implicitly
represented as the 0-th level set of an embedding function φ :
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(a)

(b)

(c)

Figure 1. (a) sample training shapes for GAN model, (b)-(c) shape samples generated by DCGAN after (b) 1500 and (c) 3500
iterations.

Ω → R. The following partial differential equation describes
the evolution of φ:

∂φ

∂t
= −∂E

∂φ
(6)

It is common to choose the signed distance function as the map-
ping φ. For a point p ∈ Ω, this function yields the negative
distance from p to the contour C if p is inside C, the positive
distance from p to C if p is outside C, and 0 if p ∈ C. Repla-
cing the contour the signed distance function phi results that 1C
now boils down to the Heaviside function: 1C [x] = Hφ[x] =
[φ[x] >= 0].

3.3 Implicit shape representation

Since φ is a function, optimizing over φ is an infinite-dimensional
problem solvable with the calculus of variations. Therefore, it
is beneficial to constrain φ to a more computationally tractable
form. Cremers and Rousson (2007) proposed to implicitly rep-
resent the function φ using a finite set of real shape coefficients
α = [α1, . . . , αM ], αi ∈ R. Using this representation, it is now
possible to explicitly model the shape coefficients α in a prior
Eshp(α) = − logP(α) (see Eq. 2). The authors also accoun-
ted for rigid transformations of the evolving contour (transla-
tion h, rotation θ) in their formulation. Let GΦ[α] : R → Φ
denote a ’generator’ which, for a set of shape parameters α re-
turns a signed distance function φ′ ∈ Φ, where Φ is the domain
of signed distance functions. We can then write the evolved φ
value as (Rθ denotes the rotation matrix by angle θ):

φα,t,θ(x) = GΦ[α](Rθx+ t) (7)

The total energy E(α, t, θ) = Eimg(α, t, θ) +Eshp(α) is now
only a function of the shape coefficients and rigid transform-
ation parameters and can be minimized using gradient based
methods.

4. GAN-BASED SHAPE PRIORS

Generative adversarial networks (Goodfellow et al., 2014) are a
class of neural networks capable of learning a mapping from a

(lower-dimensional) latent variable space Z to complex, high-
dimensional spaces X (e.g. images). For the purpose of gener-
ative modeling, they can be viewed as a black box G(z) : Z →
X yielding an output x ∈ X given a latent vector z ∈ Z as
input. In this work, we consider GANs as a means for gener-
ating binary images representing the shape masks of dead tree
crowns (see Fig. 1a), i.e. G(z) : [−1; 1]nZ → 0, 1N . The lat-
ent variable vector z represents our shape coefficient vector α
(see Sec. 3.3). Usually, an input ’noise’ distribution must be
chosen for the latent variable space Z during the training phase
of the GAN. Some popular choices include the normal and the
uniform distributions. Note that the latter is particularly useful
in our setting, because it would cause the shape prior probabil-
ity term P(α) = P(z) = const to become constant and hence
irrelevant for the optimization of Eq. 5. Indeed, any z ∈ Z
from the valid range [−1; 1]nZ will by construction correspond
to valid shapes consistent with the training data once the GAN
has been properly trained. Furthermore, the binary image out-
put of the network means that G(z) is its own indicator func-
tion, eliminating the need for an explicit 1C in Eq. 5. Adding
the rigid transformation parameters t, θ, it suffices to optimize:

Gz,t,θ[x] = G(z)[Rθx+ t]

E(z, t, θ) = Eimg(z, t, θ)

= −
∫

Ω

Gz,t,θ[x] logP(Ω1|I(x))+

(1−Gz,t,θ[x]) log[1− P(Ω1|I(x))]dx

(8)

SinceG(z) is a feed-forward neural network, the gradient ∂G(z)
∂z

can be easily obtained using the chain rule and backpropaga-
tion. Also, it should be noted that in a raster image setting,
the translation values t are usually constrained to be integers
(whole pixels). In order to maintain smoothness and differenti-
ability, we use bilinear interpolation to enable t ∈ R.

5. EXPERIMENT

5.1 Data acquisition

Color infrared images of the Bavarian Forest National Park,
situated in South-Eastern Germany (49◦3′19′′ N, 13◦12′9′′ E),
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Figure 2. Architecture of the DCGAN. ’TCONV’ refers to transposed convolution, whereas ’ReLU’ indicates a rectified linear unit.

were acquired in the leaf-on state during a flight campaign car-
ried out in June 2017 using a DMC III high resolution digital
aerial camera.The mean above-ground flight height was ca. 2300
m, resulting in a pixel resolution of 10 cm on the ground. The
images contain 3 spectral bands: near infrared, red and green.

5.2 Training and test data

We manually marked 201 outlines of dead trees within the color
infrared images of a selected area in the National Park (see
Fig. 3a). The distribution of their areas is depicted in Fig. 5.
These manually marked were utilized for the purpose of train-
ing the semantic segmentation U-Net. We prepared patches of
size 200x200 containing the input color infrared image and a
pixel mask representing the labeled polygon regions. Also, we
constrained the negative class labels to at most 5 pixels away
from labeled dead tree polygons, to account for the fact that
not all dead tree crowns in the processed images were labeled
(Fig. 3b).

To train the DCGAN, we employed a different, semi automatic
strategy for acquiring sample crown polygon data. We applied
the trained U-Net to a new, previously unseen region of the Na-
tional Park, and obtained the dead tree crown per-pixel prob-
ability map. Connected component segmentation was then ap-
plied on pixels of the image classified as dead trees. As the test
area contained many overlapping and adjacent dead trees, the
connected components obtained from this step usually did not
represent only single trees, but rather collections of several dead
tree crowns. We subsequently manually partitioned a number of
connected components into individual tree crowns by applying
split polylines to successively cut parts off the main polygon
(Fig. 3c). We found this approach to be less time consuming
than manually drawing the entire polygons. We obtained a total
of 750 artificial tree crown polygons this way. They were util-
ized for training the DCGAN.

5.3 Evaluation criteria

We used two types of criteria to evaluate similarity between the
reference and segmented polygons. First, a per-pixel similar-
ity measure was applied: the Dice coefficient, DSC defined
on two sets of pixels A,B as: DSC(A,B) = 2|A∩B|

|A|+|B| . The
Dice coefficient is normalized on the interval [0; 1] and meas-
ures the similarity of two sets, with a value of 0 indicating no
overlap and a value of 1 indicating set equality. Second, we con-
sidered more abstract, unary properties of polygons quantifying
their convexity/concavity. Specifically, we utilized the two con-
vexity measures cp = p/pc and ca = a/ac described in (Jiao
and Liu, 2012), where p, a, pc, ac denote, respectively, the tar-
get polygon’s perimeter, area, as well as the perimeter and area

(a)

(b)

(c)

Figure 3. (a) manually marked dead tree crown polygons within
CIR image, (b) left: input CIR image patch for U-Net training,
right: matching label mask: positive and negative class labels

indicated by magenta and blue, respectively, black mask regions
do not count toward training loss, (c) manually drawn split
polylines (in red) to separate connected components into

individual tree crowns.

of the polygon’s convex hull. We compare the measures cp, ca
between the reference polygons and their detected counterparts
to quantify the relative difference in convexity. We also cal-
culated mean differences in the reference vs. detected polygon
area and perimeter. Denoting the reference and detected poly-
gons respectively as PR, PD , we define the relative differences
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(a) (b)

Figure 4. Sample segmentation results where the GAN-based approach attained (a) better and (b) worse values of the Dice coefficient.
Top and bottom rows contain, respectively, polygons reconstructed by GAN and eigenshape models plotted as green outlines over the

white ground truth polygons.)

in the convexity measures as:

∆cp(PR, PD) = |cp(PR)− cp(PD)|/cp(PR)

∆ca(PR, PD) = |ca(PR)− ca(PD)|/ca(PR)
(9)

By analogy, we define relative differences in area and perimeter
as ∆a(PR, PD),∆p(PR, PD).

5.4 CNN details

We utilized the DCGAN (Radford et al., 2016) in the role of
the shape prior, due to its flexibility in choosing the dimen-
sions of the output image as well as the latent vector Z. We
used a Z dimension of 20 and an output image size of 108 x
108 pixels, which represents 10.8 x 10.8 meters in world co-
ordinates. This was chosen to encompass most tree crowns of
interest. We trained the GAN for 3500 iterations on the 750
original samples, with added flips and reflections as data aug-
mentation. Sample shapes generated by the GAN at various
stages of training are shown in Fig. 1. We extended the GitHub
repository carpedm20/DCGAN-tensorflow (2016) to enable op-
timization of the objective given by Eq. 8. The overview of the
used GAN architecture is shown in Fig. 2.

The tensorflow implementation of the U-Net provided by Akeret
et al. (2017) was used for semantic segmentation and deriving
target class posterior probabilities for all considered images.
We used the original architecture proposed by Ronneberger et
al. (2015), and trained the network for 2000 epochs on a total
of 200 patches of size 200x200 pixels.

5.5 Experimental setup

To assess the capability of the proposed active contour approach
for segmenting individual dead trees, we performed the seg-
mentation for 200 sample images centered around the manu-
ally marked polygons (see Sec. 5.2), with additional padding
of 6m around the center polygon. The objective function from
Eq. 8 was optimized with respect to shape coefficients and ri-
gid transformation parameters, using 100 restarts of gradient
descent from random initializations. All computations were
also performed for the baseline method, where the GAN shape
prior was substituted with the original linear eigenshape signed
distance function model introduced by Tsai et al. (2003). The
baseline was trained on the same input data as the GAN-based
approach. The segmented polygons were evaluated against the
center polygon of the image only (overlap with other polygons
would count as misclassified pixels). We computed the Dice
coefficient as well as the relative differences ∆c1,∆c2,∆a,∆p
and area.

Figure 5. Distribution of areas (in square meters) associated with
reference tree crown polygons.

6. RESULTS AND DISCUSSION

The numeric results of our experiments are listed in Table 1.
Although the GAN and eigenshape methods achieved a nearly
identical mean Coefficient of 0.69 on the whole test set, there
are important differences in the behavior of the two methods.
First, the test set can be partitioned into two subsets TG, TE
such that the GAN-based method achieved better performance
(measured by the Dice coefficient) on the former, whereas the
eigenshape formulation was superior on the latter set (see Fig. 4
for a visual comparison of sample segmented polygons from
the two sets). The performance of the GAN method is stable
on both subsets (within ∓1 percentage points (pp) of the mean
Dice coefficient), however the eigenshape variation’s results de-
teriorate significantly on TG, dropping by 10 pp compared to
the mean. We believe this may be attributed to the average size
of the reference polygons in the datasets, which is significantly
smaller for TG compared to TE (21.9 vs 31.5 sq. m). The
20 first eigenmodes failed to capture the full variability of the
training set (a total of 92% of the variance), which was dom-
inated by polygons larger than TG’s mean value (see Fig. 5.
On the other hand, it seems that the GAN-based segmentation
performed better on difficult examples, since both it and the
baseline degraded on TG but the GAN’s average Dice coeffi-
cient remained 9 pp higher on average.

Inspecting the images in Fig. 4, we notice that the eigenshape
prior favors blob-shaped, nearly convex polygons with little fine
detail. Apparently the first 20 eigenmodes of the training shapes
focused on coarse details. The GAN generated images possess a
more jagged boundary, with many concavities and fine details,
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Data Set Num. objects Dice coef. Convexity Polygon metrics

∆cp ∆ca cp,ref ca,ref ∆p ∆a pref aref

All data 201 2.43 0.69 27.1 57.9
GAN 0.69 0.21 0.11 0.35 0.33

eigenshape 0.69 0.52 0.3 0.46 0.50
GAN superior 91 2.32 0.69 21.9 50.0

GAN 0.68 0.19 0.11 0.43 0.33
eigenshape 0.59 0.49 0.27 0.81 0.39

GAN inferior 110 2.51 0.69 31.5 64.0
GAN 0.70 0.22 0.10 0.29 0.33

eigenshape 0.77 0.55 0.33 0.17 0.60

Table 1. Comparative results between GAN and eigenshape(baseline) driven segmentation. Mean Dice coefficient, reference polygon
convexity and area/perimeter (cp,ref , ca,ref , aref , pref ), relative differences in convexity measures (∆ca,∆cp) and in polygon

area/perimeter (∆a,∆p) between reference and detected polygons are shown for 3 data subsets: (1) all data, (2) only polygons where
GAN attained a better Dice coefficient, (3) only polygons where GAN attained a worse Dice coefficient.

however despite moderately high Dice coefficient values, the
polygons do not seem to be very well aligned with the target
shapes. There are several possible reasons for this. First, ex-
amining Fig. 1, it can be seen that the GAN converged to a state
where only a handful of shapes is replicated with small vari-
ations. Therefore, in some sense the GAN failed to fully learn
the distribution of the training data. We hypothesize that the
training set chosen through semi-automatic extraction of poly-
gons from semantic segmentation maps might have been too ho-
mogeneous and not representative enough of all possible dead
tree crown shapes. Another reason for the discrepancy between
the detected and reference polygons could be convergence to
weak local optima when optimizing the objective from Eq. 8.
This could be addressed by utilizing a GAN that is invertible by
design, without the need for an explicit optimization step over
the latent variables, e.g. (Asim et al., 2020).

The intuitions from visual inspection of the polygons in Fig. 4
can be to some extent quantified by shape indices measuring
the convexity of polygons (see Sec.5.3). On average, the GAN
prior-based segmentation produces polygons which deviate by
21% in the ratio of perimeter to convex hull perimeter (cp), and
by 11% in ratio of area to convex hull area (ca). These val-
ues are more than doubled for the eigenshape approach, at re-
spectively 52% and 30%. Similarly, the GAN-generated poly-
gons differ from the reference shapes by 33% and 35% in terms
of perimeter and area, whereas the baseline produces polygons
with an average difference of 50% and 46%. This is consist-
ent with the more coarse and convex shapes generated by the
eigenshape prior. In general, the GAN prior leads to shapes
that are more similar to the target polygons with respect to all
considered shape indices.

7. CONCLUSIONS

This paper presented a new formulation of active contour seg-
mentation where the object shape prior is derived from a gen-
erative adversarial network. For an architectural choice of the
GAN where the uniform distribution is used for sampling from
the latent space, the optimization of the active contour object-
ive is simplified by rendering the shape probability term con-
stant, because all admissible latent vectors on the hypercube
[−1; 1]nZ are valid, equal probability shapes by construction.
The GAN enriched model is amenable to optimization through
gradient descent since the generative component of the network

can provide gradients of the generated image with respect to the
latent vector by means of backpropagation. Experiments on a
real-world dataset of highly variable dead tree crown polygons
showed that in some scenarios the GAN prior outperforms the
eigenshape baseline in terms of per-pixel similarity of the seg-
mented and target polygons. On average, the geometric prop-
erties of the GAN generated polygons are closer to those of
the reference shapes. In this study, the GAN segmentation did
not attain its full potential due to problems with convergence
of the learning process and possibly a too constrained training
set. An interesting future direction is to employ GANs which
are invertible by construction, and which explicitly attempt to
measure how well the original training data may be represented
by elements of their latent space.
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