

Jacquelyn A. Shelton¹, Jan Gasthaus^{2,3}, Zhenwen Dai⁴, Jörg Lücke⁵, and Arthur Gretton² ¹Technical University Berlin, ²UCL Gatsby and CSML, ³Amazon, ⁴University of Sheffield, ⁵University of Oldenburg

Highlights/Abstract

- Novel nonparametric procedure for fast inference in general models with large # of latent states, e.g. # latent states
- Idea: meta-algorithm for EM, iterative latent variable presel alternate between learning a 'selection function' (reveal the latent variables) and using the result for a compact approx posterior distribution for EM
- How: learn selection function entirely from the observed data current EM state via Gaussian process regression - earlier used expensive manually-designed selection functions for setting – our approach is fully automatic and flexible
- Experiments suggest GP-select to play a crucial role for inf complex hierarchical models (e.g. [1]) where the relationsh inputs / outputs is complex and thus hand-derived selection are expensive (or impossible)

Variable selection for accelerated inference

Notation:

Observed data: $\mathbf{y}^{(n)} = (y_1^{(n)}, \dots, y_D^{(n)})^T$, N observations of D

- Binary latent variables: $\mathbf{s}^{(n)} = (s_1^{(n)} \dots, s_H^{(n)})^T \in \{0, 1\}^H, H$ la
- Reduced latent space: H'-dimensional, where $H' \ll H$ dim Prior distribution over latent variables is $\rho(\mathbf{s}|\theta)$, likelihood of
- $p(\mathbf{y}|\mathbf{s},\theta) \rightarrow \text{Posterior distribution over latent variables:}$

$$p(\mathbf{s}^{(n)}|\mathbf{y}^{(n)},\Theta) = \frac{p(\mathbf{s}|\Theta) \, p(\mathbf{y}|\mathbf{s},\Theta)}{\sum_{\mathbf{s}'^{(n)}} p(\mathbf{s}'|\Theta) \, p(\mathbf{y}|\mathbf{s}',\Theta)}$$

Selection via Expectation Truncation (ET) [2] in

Posterior distribution (1) approximated by a truncated poste distribution, computed with support reduced to \mathcal{K}_n :

$$p(\mathbf{s}^{(n)}|\mathbf{y}^{(n)},\Theta)$$

$$pprox oldsymbol{q}_n(\mathbf{s}^{(n)}; \Theta) = rac{p(\mathbf{s}^{(n)}, \mathbf{y}^{(n)} | \, \Theta) \, \delta(\mathbf{s}^{(n)})}{\displaystyle\sum_{\mathbf{s}^{\prime(n)} \in \mathcal{K}_n} p(\mathbf{s}^{\prime(n)}, \mathbf{y}^{(n)})}$$

- where \mathcal{K}_n contains the latent states of the H' relevant vari point $\mathbf{y}^{(n)}$, and $\delta(\mathbf{s} \in \mathcal{K}_n) = 1$ if $\mathbf{s} \in \mathcal{K}_n$, else 0,
- \mathcal{K}_n should contain most of the probability mass $p(\mathbf{s} | \mathbf{y})$, ar
- \mathcal{K}_n should be significantly smaller than full latent space

ET with affinity

- Constructing a selection function first, rank the latent varial to an *affinity function* $f_h(\mathbf{y}^{(n)}) : \mathbb{R}^D \to \mathbb{R}$ which directly reflect relevance of latent variable s_h .
- A natural choice of selection function is the one that approx *marginal posterior probability* of each variable, e.g. learn *f*

$$f_h(\mathbf{y}^{(n)}) \approx p_h^{(n)} \equiv p(s_h^{(n)} = \mathbf{1} | \mathbf{y}^{(n)}, \Theta)$$

 \rightarrow Use the affinity function to select relevant variables: mar posterior probability p_h exceeds a threshold

References

[1] Dai, Z. and Lücke, J. (2014). Autonomous document cleaning – a generative approach to reconstruct strongly corrupted scanned texts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(10):1950–1962. [2] J. Lücke and J. Eggert. (2010). Expectation Truncation And the Benefits of Preselection in Training Generative Models. Journal of Machine Learning Research (JMLR).

GP-select: Accelerating EM using adaptive subspace preselection

	Latent Variable Preselection: affinity and GP-Select	Experiments
ative graphical tent variables	Affinity (approx marg post prob) to highlight most relevant latent variables Sort and reduce full indices to H' most rel. variables' set – define $\gamma(\hat{p}^{(n)})$ to output the H' selected variable indices I for the <i>n</i> th data point Define subset of the H'-dimensional relevant latent states \mathcal{K}_n with $\mathcal{I}(I)$ All non-relevant variable states s_h for all variables $h \notin I$ are set to 0 in Eq. (2)	Space Binary SC latents: $\mathbf{s} \sim Bern(\mathbf{s} \pi) = \prod_{h=1}^{H} observations: \mathbf{y} \sim \mathcal{N}(\mathbf{y})$ Spike & Slab latents: $\mathbf{s} = \mathbf{b} \odot \mathbf{z} \sim Bern(\mathbf{b} \pi)$ observations: $\mathbf{y} \sim \mathcal{N}(\mathbf{y})$ Nonlinear Spike & S latents: $\mathbf{s} = \mathbf{b} \odot \mathbf{z} \sim Bern(\mathbf{b} \pi)$ observations: $\mathbf{y} \sim \mathcal{N}(\mathbf{y})$ maximum Data: $N = 2,000$ with $D = 0$ gen. by each model, with
dimensions atent dims	Using \mathbf{f}, \mathcal{I} , and γ , we can define a <i>selection function</i> $\mathcal{S} : \mathbb{R}^D \mapsto 2^{\{1,,H\}}$ to select subsets \mathcal{K}_n per data point $\mathbf{y}^{(n)}$ for the affinity based selection function: $\mathcal{S}(\mathbf{y}^{(n)}) = \mathcal{I}\left[\gamma\left[\mathbf{f}(\mathbf{y}^{(n)})\right]\right] = \mathcal{K}_n$ (4)	Shown: final EM it; GP-se Gau Gau ^{3.5} RBF kernel
$f \text{ the data is}$ (1) EM erior $\in \mathcal{K}_n$ (2) Θ	Previous work: selection function S was deterministic and derived by hand for each model using upper bounds or noiseless limits [3,4] We generalize and automatize this approach: learn Ss with GP regression Define $f_h(\mathbf{y}^{(n)}) \sim \text{GP}(0, k(\cdot, \cdot))$, where $k(\cdot, \cdot)$ is the covariance kernel and flexibly parameterizable to represent the relationship between variables Before each E-step: train GP on p_h from prev. EM iteration (where $p_h = \langle s_h \rangle$): $\mathcal{D} = \{(\mathbf{y}^{(n)}, \langle \mathbf{s} \rangle_{q_n(\mathbf{s})}^{(n)}) n = 1, \dots, N\}$ Compute predicted mean of GP using leave-one-out (LOO) prediction: $\hat{p}_h^{(n)} \leftarrow \langle s \rangle_h^{(n)} - \frac{[K^{-1} \langle \mathbf{s} \rangle_h]_{nn}}{[K^{-1}]_{nn}}$ (5)	 Linear kernel Data: C = 3 clusters, GP Shown: using the wrong patterns); sel. funcs need patterns); sel. funcs need Translation in
iables for data nd	 → Efficiently implementable for all latent vars <i>h</i> = 1,, <i>H</i> and data points <i>n</i> = 1,, <i>N</i> using matrix operations – only 1 kernel matrix inversion for all <i>N</i> ■ Substitute Eq. (5) for f in the affinity based selection function Eq. (4) ▲ Algorithm 	$ \begin{array}{c} A \\ \hline \\ D \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \\ \end{array} \\ \hline \\ \\ \end{array} \\ \hline \\ \\ \\ \\$
bles according to the s the s follows: (3) rginal	for EM iterations $t = 1,, T$ do for data point $n = 1,, N$ do compute affinity of all latent variables $\hat{\mathbf{p}}_t^{(n)}$: (5) compute subset of relevant states S : (4) compute truncated posterior $q_{n,t}(\mathbf{s})$, E-step: (2) update model parameters in M-step store $\langle \mathbf{s} \rangle_{q_t(\mathbf{s})}^{(n)}$ for $\mathbf{p}^{(n)}$ in EM iteration $t + 1$ end for optimize kernel hyperparams every T^* EM iterations end for	 GP every5

[3] Bornschein, J., Henniges, M., and Lücke, J. (2013). Are V1 simple cells opti- mized for visual occlusions? A comparative study. PLoS Computational Biology, 9(6):e1003062. [4] Sheikh, A.-S., Shelton, J., and Lücke, J. (2014). A truncated EM approach for spike- and-slab sparse coding. Journal of Machine Learning Research (JMLR), 15:2653–2687.

