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Highlights/Abstract

Novel nonparametric procedure for fast inference in generative graphical
models with large # of latent states, e.g. #latent states#latentvariables

Idea: meta-algorithm for EM, iterative latent variable preselection –
alternate between learning a ’selection function’ (reveal the relevant
latent variables) and using the result for a compact approx of the
posterior distribution for EM
How: learn selection function entirely from the observed data and
current EM state via Gaussian process regression – earlier approaches
used expensive manually-designed selection functions for each problem
setting – our approach is fully automatic and flexible
Experiments suggest GP-select to play a crucial role for inference in
complex hierarchical models (e.g. [1]) where the relationship between
inputs / outputs is complex and thus hand-derived selection functions
are expensive (or impossible)

Variable selection for accelerated inference

Notation:
Observed data: y(n) = (y (n)

1 , . . . , y (n)
D )T, N observations of D dimensions

Binary latent variables: s(n) = (s(n)
1 . . . , s(n)

H )T ∈ {0,1}H, H latent dims
Reduced latent space: H ′-dimensional, where H ′� H dimensions.
Prior distribution over latent variables is p(s|θ), likelihood of the data is
p(y|s, θ)→ Posterior distribution over latent variables:

p(s(n)|y(n),Θ) =
p(s|Θ) p(y|s,Θ)∑

s ′(n)
p(s ′|Θ) p(y|s ′,Θ)

(1)

Selection via Expectation Truncation (ET) [2] in EM

Posterior distribution (1) approximated by a truncated posterior
distribution, computed with support reduced to Kn:

p(s(n)|y(n),Θ) ≈ qn(s(n); Θ) =
p(s(n),y(n)|Θ) δ(s(n) ∈ Kn)∑

s ′(n)∈Kn

p(s ′(n),y(n)|Θ)
(2)

- where Kn contains the latent states of the H ′ relevant variables for data
point y(n), and δ(s ∈ Kn) = 1 if s ∈ Kn, else 0,

- Kn should contain most of the probability mass p(s |y), and
- Kn should be significantly smaller than full latent space

ET with affinity

Constructing a selection function first, rank the latent variables according
to an affinity function fh(y(n)) : RD 7→ R which directly reflects the
relevance of latent variable sh.
A natural choice of selection function is the one that approximates the
marginal posterior probability of each variable, e.g. learn f as follows:

fh(y(n)) ≈ p(n)
h ≡ p(s(n)

h = 1|y(n),Θ) (3)

→ Use the affinity function to select relevant variables: marginal
posterior probability ph exceeds a threshold

Latent Variable Preselection: affinity and GP-Select
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Affinity (approx marg post prob) to highlight most relevant latent variables

Sort and reduce full indices to H ′ most rel. variables’ set – define γ (p̂(n)) to
output the H ′ selected variable indices I for the nth data point
Define subset of the H ′-dimensional relevant latent states Kn with I(I)
All non-relevant variable states sh for all variables h 6∈ I are set to 0 in Eq. (2)

Using f, I, and γ, we can define a selection function S : RD 7→ 2{1,...,H} to
select subsets Kn per data point y(n) for the affinity based selection function:

S(y(n)) = I
[
γ
[
f(y(n))

]]
= Kn (4)

GP-select: Learn affinity with GP regression

Previous work: selection function S was deterministic and derived by hand
for each model using upper bounds or noiseless limits [3,4]
We generalize and automatize this approach: learn Ss with GP regression
Define fh(y(n)) ∼ GP (0, k(·, ·)), where k(·, ·) is the covariance kernel and
flexibly parameterizable to represent the relationship between variables
Before each E-step: train GP on ph from prev. EM iteration (where ph = 〈sh〉):
D = {(y(n), 〈s〉(n)

qn(s))|n = 1, . . . ,N}
Compute predicted mean of GP using leave-one-out (LOO) prediction:

p̂(n)
h ← 〈s〉

(n)
h −

[K−1〈s〉h]nn

[K−1]nn
(5)

→ Efficiently implementable for all latent vars h = 1, ...,H and data points

n = 1, ...,N using matrix operations – only 1 kernel matrix inversion for all N
Substitute Eq. (5) for f in the affinity based selection function Eq. (4)

Algorithm

for EM iterations t = 1, . . . ,T do
for data point n = 1, . . . ,N do

compute affinity of all latent variables p̂(n)
t : (5)

compute subset of relevant states S: (4)
compute truncated posterior qn,t(s), E-step: (2)
update model parameters in M-step
store 〈s〉(n)

qt(s) for p(n) in EM iteration t + 1
end for
optimize kernel hyperparams every T ∗ EM iterations

end for

Experiments

Sparse coding models

Binary SC

E

Data Whand-derived WGP-select

Spike & Slab SC

Nonlinear Spike & Slab SC

Data: N = 2,000 with D = 5× 5 obs dims & H = 10 latent dims/bars
gen. by each model, with GP-select to preselect H ′ = 5 dims
Shown: final EM it; GP-select converges to GT params, WGP−select

Gaussian mixture model
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Data: C = 3 clusters, GP-select to preselect C ′ = 2 clusters
Shown: using the wrong selection function can do harm (i.e. miss
patterns); sel. funcs need to be flexible and possibly nonlinear

Translation invariant occlusive models [1]
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Problem: locate objects in scene (A), with massive latent space
complexity – # of obj. locations exponentiated by # of objects.
Speed: partial incomplete Cholesky approx to for faster GP regression
computation, update GP hyperparams every 5 EM its
Shown: all 3 variants of GP-selection learn all objects (B) with
accuracy equivalent to hand-crafted selection (C & D)
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