GP-select: Accelerating EM using adaptive subspace preselection
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Highlights/Abstract Latent Variable Preselection: affinity and GP-Select Experiments
= Novel nonparametric procedure for fast inference in generative graphical = 1, Sparse coding];n:)dels
models with large # of latent states, e.g. #/atent statest/atentvarables - ata Whand-deri;ed ‘_VGP sect
m |dea: meta-algorithm for EM, iterative latent variable preselection — = Binary Sf . E_.E' —I | II
alternate between learning a ’selection function’ (reveal the relevant 5 latents: s ~ Bern(s|r) = I, = (1-7) ™ ﬁ?‘!'l'lui.-' CT _ITI
latent variables) and using the result for a compact approx of the ~ 0 B— e observations: y ~ N (y; Ws, ") Fers) = —
(o) Spike & Slab SC #UT aEm T

posterior distribution for EM @ -
m How: learn selection function entirely from the observed data and { %‘: ?” TFE =Pl ==
current EM state via Gaussian process regression — earlier approaches latents: s =b © 2z ~ Bern(b|r) O N (z; 1, 1) =N -1 | = |
observations: y ~ N (y; Ws,a*I) _

used expensive manually-designed selection functions for each problem ) . i
setting — our approach is fully automatic and flexible

m Experiments suggest GP-select to play a crucial role for inference Iin

Affinity (approx marg post prob) to highlight most relevant latent variables Nonlinear Spike & Slab SC .I__ ¥
latents: s =b ® z ~ Bern(b|r) © N(z; i, Xy) e —

complex hierarchical models (e.g. [1]) where the relationship between | ® Sort and reduce full indices to H" most rel. variables’ set — define ~ (p\"”)) to observations: y ~ A(y:max{sy W, }. o21) ‘MH
inputs / outputs is complex and thus hand-derived selection functions output the H' selected variable indices / for the nth data point | U H T
are expensive (or impossible) Define subset of the H’-dimensional relevant latent states K, with Z(/) mData: N=2,000 with D=5 x5 obs dims & H = 10 latent dims/bars
_ _ _ All non-relevant variable states sy, for all variables h ¢ [ are set to 0 in Eq. (2) gen. by each model, with GP-select to preselect H' = 5 dims
Variable selection for accelerated inference Using f, Z, and ~, we can define a selection function S : RP — 2U1--H} to m Shown: final EM it; GP-select converges to GT params, Wgp_seject
Notation: select subsets K, per data point y(" for the affinity based selection function: Gaussian mixture model
= Observed data: y( = (A", .... yU\T N observations of D dimensions Siy"™y = 1 [7 {f(y(”))H - K, (4) T |- T 5 S e n
m Binary latent variables: sl") = (sﬁ”) o s,(j))T c {0,1}", H latent dims _ . : : RBF kernel | | ﬁ | | |
m Reduced latent space: H’-dimensional, where H’ < H dimensions. GP-select: Learn affinity with GP regression | O D ﬁ
m Prior distribution over latent variables is p(s|f), likelihood of the data is | m Previous work: selection function S was deterministic and derived by hand " emierstono [— o waration 20 u
p(y\s, ‘9) — Posterior distribution over latent variables: for each model using upper bounds or noiseless limits(34, -+ mw N
p(sy". e p(s|©) plys, O) (1) m We generalize and automatize this approach: learn Ss with GP regression N ﬁ | i n
Zp (ST1O)pyIs’.6) m Define fy(y\") ~ GP (0, k(-, ")), where k(-, ) is the covariance kernel and Hinear keme! @ L L {‘
Selection via Expectation Truncatl on (ET) [2] in EM flexibly parameterizable to represent the relationship between variables | /¢ [ g VY [ R ?
R | | m Before each E-step: train GP on p, from prev. EM iteration (where p, = (sp)): 2Data: C — 3 clusf;éré OGP seloct toEMtrtesléIect C_ chusters
m Posterior distribution (1) approximated by a truncated posterior D ={(y" s\ Yn=1,..., N} P , |
distribution, computed with support reduced to /Cni gn(S) m Shown: using the wrong selection function can do harm (i.e. miss

m Compute predicted mean of GP using leave-one-out (LOQO) prediction: patterns): sel. funcs need to be flexible and possibly nonlinear

©) (s /c,,
p(s(n)w(n)7 0) ~ qn(s(n); ) = p(st, y") )n( < ) (2) [K—1 <S>h] ] _ _ ]
Z p(s ,657”’) — <5>§7”’) e nn (5) Translation invariant occlusive models [1]
Nek, nn
- where K, contains the latent states of the H' relevant variables for data| - Efficiently implementable for alllatent vars h— 1., H and data points | A NI IS o . =
point y("), and o(8 € n) = 1ifs € Ky, else 0, n=1,...,N using matrix operations — only 1 kernel matrix inversion for all N ..--.--H e[ ] E o ot
- Kn should contain most of the probability mass p(s|y), and = Substitute Eq. (5) for f in the affinity based selection function Eq. (4 pi I E
- ICn, should be significantly smaller than full latent space 2 |y gE s~
ET with affinity Algorithm 2 —_— S .
m Constructing a selection function first, rank the latent variables according| ¢or EM iterations t = 1..... T do E  and-craft| B
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o an afflnlty function fh(y(n)) : RD — R which direC’[Iy reflects the for data pointn=1,...,Ndo r;('tlmger(i;f ii;;)erali':;(i)or;és(' 10 distance from ground-truth (pixels)
relevance of latent variable s;. compute affinity of all latent variables p!”: (5) = Problem: locate objects in scene (A), with massive latent space
m A natural choice of selection function is the one that approximates the COmpU:e tSUbsett 0(‘; re'e‘t’ar_“ states S 3E(4)t , complexi.ty 4 of onj ocations exp(;nentiate d by % of objeFZ:ts
: : ” - m run rior -step: — . _
marginal posterior probability of each variable, e.g. learn f as follows: e e ﬁﬂ”’f(s)’ step: (2) T .
. ) ) . update rfgr?)de par(a;meters In M-step m Speed: partial incomplete Cholesky approx to for faster GP regression
Y — - n N . . . |
In(Y") = Py = p(s,” = 1]y"", 0) (3) iy Store (8) ) for P in EM iteration £ + 1 computation, update GP hyperparams every 5 EM its
Co : : _ : enda 1or _ : : : :
— Usg the afflnlt.y. function to select relevant variables: marginal optimize kernel hyperparams every T* EM iterations m Shown: all 3 yarlants of GP-selection Iearq all objects (B) with
posterior probability p, exceeds a threshold end for accuracy equivalent to hand-crafted selection (C & D)
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