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Introduction

Neural activity encodes multiple-cause stimuli with discrete events.
Neurons either spike or remain inactive. Many modeling approaches
therefore rely on binary units for encoding. Prominent examples are,
for instance, restricted Boltzmann machines [5] and, more recently,
deep belief networks [6]. In this work we study a probabilistic
generative model with binary units. We investigate the component
extraction capabilities of a model with hidden and observed layer
both encoding binary data through Bernoulli distributions. In this
setting basis functions can not be combined using summation as in
sparse coding models [3] but require non-linear combination rules.

BMCA: Binary Maximal Causes Analysis

In this work we explore a generative model with the combination of
binary variables using a maximum combination (BMCA), previously
used for continuous variables, ([1,2]), and optimize the model
parameters using EM. As in standard approaches such as Sparse
Coding [3], Independent Component Analysis, or Binary Sparse
Coding (BSC), MCA assumes a sparse prior with independent
hidden variables.
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W ∈ [0,1]D×H basis functions

with M-step update equations for basis functions W :
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In the place where standard sparse coding approaches, NMF, or ICA
use the sum to combine basis functions, BMCA uses a (pixel-wise)
maximum operation. To derive tractable approximations for param-
eter estimation we apply Expectation Truncation (ET; [4]) - a varia-
tional EM approach which reduces the hidden space to only those
variables contributing most posterior mass. This allows one to infer
all model parameters, namely the basis functions W and the degree
of sparseness, π. The resulting algorithm is applicable to large-scale
problems with hundreds of observed and hidden variables.

Application to MNIST digits database

The non-linearity of the BMCA is illustrated above using an extracted
patch from a natural scene; shown is the contrast between the non-
linear max of BMCA (maxh{sh Wdh}) and the sum of standard su-
perposition (

∑
h{sh Wdh}). This may represent a more plausible as-

sumption for the superposition of hand-strokes in the construction of
digits.

To study the implications of the non-linear superposition for visual
data, the BMCA algorithm was applied to N = 40 000 MNIST digits
with D = 28× 28 = 784 pixels, H = 64 hidden units, and H ′ = 8.

Inferred basis functions (H=64):

Basis functions inferred at first EM it-
eration

Basis functions inferred at final
(150th) EM iteration

Conclusions

This work explored an approach that combines a fast
preselection of relevant data components with a subsequent
recurrent processing phase (compare [7]), and has recently been
linked to neural processing.
Variational training in the model infers the weights of the
connections between the hidden and the observed units as well
as the prior activation probabilities of the hidden units.
In numerical experiments on artificial data and more realistic
data, we show that components of mixtures in binary data can
successfully be recovered and that such experiments can be
scaled to high dimensional observed and hidden spaces.
Future work will explore different non-linear combinations of
basis functions with hidden units, like that used in RBMs.
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