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Problem setting / Abstract

Climate Model simulations are expensive – how can we get the
most from the realizations available?
Consider large ensembles of smaller independent simulations
and utilize shared information across realizations
Standard off-the-shelf machine learning methods cannot
represent multiple independent realizations well
Plan: Develop customized, flexible deep generative model
approach to - capture internal variability in low-dimensional latent
spaces with low reconstruction error - represent complex
spatiotemporal data and generate samples from their distributions
- help reduce the cost of obtaining new realizations from
large-scale Earth system models

ERA5 model [1] output: 10 independent re-
alizations of monthly reanalysis for mean
surface temperature from 1940–present

Deep Conditonal Generative Models

Conditional Variational Autoencoders [2]:
Encode time series: embed original full-length time series into
low-dimensional, disentangled latent space
Geography should influence time series embedding: similar
geographic coordinates⇒similar latent coordinates - aids
visualization/interpretability - uses available info to enrich encoder
3 types of variables: input vars x (geo location), output vars y
(observed time series), and latent vars z (latent coordinates)
The conditional generative process of the model: for given
observation y , z is drawn from the prior distribution pθ(z|x), and
the output y is generated from the distribution pθ(y |x , z)

Condition latent embedding of a time series y
on geographic and latent coordinates, x and z
- generative params θ and variational params ϕ
- green arrows = generative process of y
- red arrows = approximate inference of z

Optimize parameters θ, ϕ jointly: variational approximation to the
posterior, qϕ(z|y x) for pθ(z|y), by minimizing the ELBO:

log pθ(y |x) ≥ LCVAE(x , y ; θ, ϕ)
= −KL(qϕ(z|x , y)||p(z|x)) + Eqϕ(z|x ,y)[log pθ(y |x , z)]

with variational approximate posterior of z
qϕ(z|x , y) = N (z;µ(x , y), σ2(x , y)I)

→ KL-divergence acts as a regularizer, expectation as

reconstruction error; mean µ and s.d. σ learned by eg CNN (are
nonlinear functions of datapoint y i and variational params ϕ

Deep Conditional Generative Modelling Workflow

CVAE trained on ensemble of all 10 realizations simultaneously into 3D

Latent space fragmented – no discernible shape or
correspondence between realizations, each occupying own
subspace within CVAE latent space, regardless of known
geographic space correspondence

Vanilla CVAE cannot represent time series from an unseen realization properly
=⇒ fragmented embedding cannot reconstruct or generate new sample

Idea: predict new realizations from a small sample of new data, transferring
relationships learned from (training on) other realizations

Promote homogeneous structure of latent space across realizations

Train a CVAE for each
realizations separately

Intuition: points near each other in latent space have similar temporal behavior
Latent-Constrained Conditional VAE: add cross-realization latent homogeneity
constraint, optimize new objective:

LLC−CVAE(x , y ; θ, ϕ) =− KL(qϕ(z|x , y)||p(z|x)) + Eqϕ(z|x ,y)[log pθ(y |x , z)]
− λT E ρFp(x , y){||qϕ(z|x , y)− z f

x ,y ||2 − D2
z,max}

for constraints on max. distance Dz,max of latent encodings qϕ(z|x , y) at small
sample of geographic locations x to fixed points z f

x ,y in latent space
=⇒ establish common structure across realizations

sampled x coordinates fixed points z f
x ,y constrained embeddings

Predict geographic location’s coordinates in latent space

Multi-output Gaussian Process Regression [3]
Flexible nonparametric model learning a function that maps from the observed data
(fixed points’ latent coords) to a property of the latent variables (new point’s latent
coords), e.g. f : RD → RNL for (F r1(x1),qr1

ϕ (z|x1, y1)), . . . , (F rP(xP),q
rP
ϕ (z|xP, yP))

Training data: features F ri(xi) (concatenated latent coords of point xi ’s
k -nearest-neighbors, in realization ri), and regression target (true latent coords of
xi), qri

ϕ(z|xi, yi))
Model: each latent coord l is approximated by a Gaussian process gl ∼ GP(0, kl),
where kl(·, ·) is the covariance kernel, parameterized to represent (nonlinear)
relationships between variables – trained via sparse variational inference

Completing a new realization with CVAE
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apply GP decode time series at new locations

'sparse' latent       space

new realization samples

'dense' latent space  with GP predicted         values

LC-CVAE

Experimental evaluation and ablation study

→ single realization is unstable,

diminishing returns after 5 realizations

→ after a certain threshold, reconstruction error is

correlated with average neighbor distance

→ Trade-off between ratio of covered locations and quality of reconstruction (order by neighbor distance).

→ Time series at selected locations show increasing deviation between true and reconstructed curves.

Generate new samples with full schnurfle run

→ New time series retains statistical and temporal properties
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