THE HONG KONG Generating new realizations of large-scale climate ensembles
AL et with conditional variational autoencoders
‘5 Los Alamos Jacquelyn A. Shelton', Przemyslaw Polewski*, Alexander Robel?, Matthew Hoffman?, Stephen Price” o

NATIONAL LABORATORY "Hong Kong Polytechnic University 2Georgia Institute of Technology 3Los Alamos National Laboratory “TomTom North America Inc.

&

Problem setting / Abstract Deep Conditional Generative Modelling Workflow

= Climate Model simulations are expensive —how can we get the CVAE trained on ensemble of all 10 realizations simultaneously into 3D
most from the realizations available?

m Consider large ensembles of smaller independent simulations
and utilize shared information across realizations

m Standard off-the-shelf machine learning methods cannot
represent multiple independent realizations well

m Plan: Develop customized, flexible deep generative model

Latent space fragmented — no discernible shape or
correspondence between realizations, each occupying own
subspace within CVAE latent space, regardless of known
geographic space correspondence
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approach to - capture internal variability in low-dimensional latent Vanilla CVAE cannot represent time series from an unseen realization properly

spaces with low reconstruction error - represent complex — fragmented embedding cannot reconstruct or generate new sample

spatiotemporal data and generate samples from their distributions

- he|p reduce the cost of Obtaining new realizations from Idea: prediC’[ new realizations from a small Sample of new data, tranSferring 5
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Condltlona.l Varlatllonal Autoenpqders [2]: | o ® Intuition: points near each Q’[ﬁerm inm|af}enai[ space ha\/e similar ’[emporal behavior — single realization is unstable, — after a certain threshold, reconstruction error is
= Encode time series: embed Orlgmal fuII-Iength time series Into m Latent-Constrained Conditional VAE: add cross-realization latent homogeneity diminishing returns after 5 realizations correlated with average neighbor distance
low-dimensional, disentangled latent space constraint, optimize new objective:
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m 3 types of variables: input vars x (geo location), output vars y for constraints on max. distance D, max Of latent encodings g.(z|x, y) at small G 0.4 3\ 0.5~ — \
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0 Condition latent embedding of a time series y Gy v VY -
on geggraphic and latent coordinates, x and z S — Trade-off between ratio of covered locations and quality of reconstruction (order by neighbor distance).

— Time series at selected locations show increasing deviation between true and reconstructed curves.

- generative params 6 and variational params ¢
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- green arrows = generative process of y sampled x coordinates fixed péinté zh, constrained embeddings
- red arrows = approximate inference of z

Generate new samples with full schnurfle run
Predict geographic location’s coordinates in latent space geo coordinates x new generated time series y
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Optimize parameters 6, ¢ jointly: variational approximation to the original: mean =-0.02  std. = 0.11

posterior, q,(z|y x) for ps(z|y), by minimizing the ELBO: Multi-output Gaussian Process Regression [3]

m Flexible nonparametric model learning a function that maps from the observed data
log Po(y|X) > Lovae(X, y: 0, 6) (flxecCJI]| points Ifaj[?{g coo}g/zlvf)f to al__|cr)1roper’[);1 of the latent varlgl?les (ner;/v point’s latent
— —KL(qy(2|%, ¥)||0(2]X)) + Equzx.p)llog po(¥|X, 2) coords), e.g. f: R™ — for (F"(x), (2%, y1)), ... (F(Xp), 47 (2 Xp, yP))
with variational approximate posterior of z m Training data: features F"(x;) (concatenated latent coords of point x;’s
5 k-nearest-neighbors, in realization r;), and regression target (true latent coords of
Qs(2]%, y) = N(z; (X, y), 0(x, y)I)

Xi), q,(21i, ¥i))

1
! Ri II p ) i E ki . .
Pl BCK | 1 | [ AT (T " : Ll
i = i L | _| | .II i’ I g | i .'.Ilr_'l' B II. N A B ™, Y i
- i ¥ L] 1 £y | ¥ L ¥ 5 o
: A THE LA |

new: mlear'[ I=.'—EL|E|13. Ist.d. = 0.098

I e B

¥ -.-_.' |I " ..-. || ¥ .I'_I 1 L]
VET Ly !
- 1 |

new. mean = -ﬂﬂlzﬁ, st.d. = 0.098

reconstruction error; mean p, and s.d. o learned by eg CNN (are where K(-, -) is the covariance kernel, parameterized to represent (nonlinear) atent coordinates » new: mean =-0.031, std. = 0.121
nonlinear functions of datapoint y’ and variational params ¢ relationships between variables — trained via sparse variational inference _, New time series retains statistical and temporal properties
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