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Introduction

Antarctic Ice Sheet ice loss – ice-shelf basal melt flux main
contributor to global sea level rise
Predictions/uncertainties require large ensembles of realizations
from earth system models → computationally costly
To mitigate this bottleneck we can learn the variability of the
stationary component of ice melt dynamics, and generate new
time-series (realizations) using machine learning methods
But, underlying ice melt dynamics are complex and multimodal →
crucial to decompose ice melt variability into homogeneous
sub-components that can be modeled independently

Step 1: Nonlinear Dimensionality Reduction

Variational Autoencoders [3]:
Encode time series: embed original full-length time series into
low-dimensional, disentangled latent space

Assumption: observed data x generated in 2
step process: pθ(x) =

∫
pθ(z)pθ(x |z)dz, condi-

tioned on latent variables z. As inference on
the marginal pθ(x) and/or true posterior pθ(z|x)
is often intractable, the VAE uses a variational
approximation qϕ(z|x) for pθ(z|x), and learns
parameters θ, ϕ jointly by optimizing the lower
bound on pθ(x):

pθ(x) ≥ L(θ, ϕ; x) = −DKL(qϕ(z|x)||p(z)) + Eqϕ(z|x)[log pθ(x |z)]

Promote disentanglement betweenlatent dimensions, a Gaussian
prior with a diagonal covariance structure is chosen:

log qϕ(z|x) = logN (z;µ, σ2I)
where µ, σ2 are functions implemented via Convolutional Neural

Networks (CNNs)

3-dimensional latent variable embedding of ca. 1660 timebin
channels of ice flux timeseries:

Coastal distance colors Latent space structure

Method: Pipeline Components

Step 2: Clustering

Recursive clustering of latent space:
Partition the low-dimensional latent space into regions with same dynamic behavior
→ generalized statistical clustering approach [4] based on Maximum Mean
Discrepancy measure (MMD)
Consider two distributions P1,P2 on latent space Z , and kernel function
k : Z × Z → R using associated reproducing kernel Hilbert space (RKHS) H:

MMD(P1,P2) = ||µ(P1)− µ(P2)||H

Function maximizing the mean discrepancy between 2
distributions: Gaussian and Laplace w/ same mean and
variance (zero mean & unit variance)

for two-cluster problem: αi ∈ [0,1] is assignment of data point i to cluster 1
π̂1, π̂2 proportion of points to clusters 1,2

→ Compute clusters by maximizing criterion:

maxαπ̂1π̂2MMD(P̂1, P̂2) = max
α

const −
2∑

k=1

n∑
i=1

||ϕi − µ[P̂k ]||2H

Cluster # unknown in advance – Partition recursively until stopping criterion met
→ Each iteration: choose best partition of subclusters k ∈ {2,3,4,5} given data
subset Y ⊆ Z using the gap statistic [5]:

g(k) = log
MSEQ∗(k)
MSEQ∗(1)

− log
MSEQ(k)
MSEQ(1)

MSEQ(k) ≡ minα
∑

i ||ϕi − µ[P̂αi]||2H: distance from each point to its closest cluster
’center’ in the kernel’s RKHS
Q∗: reference data distribution, uniformly sampled from oriented bounding box of Q:

Proposed clustering Reference distribution

Step 2: Cluster results

latent space geographic space

Step 3: Sampling

KDE - Nonparametric sampling from clusters:
For each discovered cluster Ci in the latent space, construct a kernel
density estimator and sample from it to obtain desired number of new
timeseries

f̂i(z;B) =
1
|Ci|

∑
q∈Ci

KB(z − Zqi)

original points sampled – low κ sampled – high κ

Plug-in estimator [6] of bandwidth B with factor κ for greater variation
Choose max. bandwidth factor κ allowed by 2-sample MMD test [7]

Step 4: Generation

Decode latent space back to time-series (original) space and
generated time-series to original spatial location belonging to cluster
New time series retains statistical and temporal properties
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