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Introduction

m Antarctic Ice Sheet ice loss — ice-shelf basal melt flux main
contributor to global sea level rise

m Predictions/uncertainties require large ensembles of realizations
from earth system models — computationally costly

m To mitigate this bottleneck we can /learn the variability of the
stationary component of ice melt dynamics, and generate new
time-series (realizations) using machine learning methods

m But, underlying ice melt dynamics are complex and multimodal —
crucial to decompose ice melt variability into homogeneous
sub-components that can be modeled independently

Step 1: Nonlinear Dimensionality Reduction

Variational Autoencoders [3]:
m Encode time series: embed original full-length time series into

low-dimensional, disentangled latent space
Assumption: observed data x generated in 2

step process: py(x) = [ ps(z)py(x|2)dz, condi-
tioned on latent var/ables z. As inference on
the marginal py(x) and/or true posterior py(z|x)
IS often intractable, the VAE uses a variational
approximation q,(z|x) for py(z|x), and learns
parameters 6, ¢ jointly by optimizing the lower
bound on py(x):

Po(x) = L(0, ¢; X) = —Dk(qs(2]X)[|P(2)) + Eqg(z)x)|log Ps(X|Z)]

Promote disentanglement betweenlatent dimensions, a Gaussian
prior with a diagonal covariance structure is chosen:

g Gy (2|X) = log (2 1, 021)
where 1, o° are functions implemented via Convolutional Neural

Networks (CNNSs)

3-dimensional latent variable embedding of ca. 1660 timebin
channels of ice flux timeseries:
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Method: Pipeline Components

VAE latent space clusters in latent space single cluster new flux time-series

melt flux time-series

Step 2: Clustering

Recursive clustering of latent space:

m Partition the low-dimensional latent space into regions with same dynamic behavior
— generalized statistical clustering approach [4] based on Maximum Mean
Discrepancy measure (MMD)

Consider two distributions Py, P- on latent space Z, and kernel function

K : Z x Z — R using associated reproducing kernel Hilbert space (RKHS) H:

MMD(P;, P2) = ||11(P1) — 1(P2)||H
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Function maximizing the mean discrepancy between 2
distributions: Gaussian and Laplace w/ same mean and
o variance (zero mean & unit variance)
for two-cluster problem: o' € [0, 1] is assignment of data point j to cluster 1
71, o proportion of points to clusters 1,2
— Compute clusters by maximizing criterion:
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Cluster # unknown in advance — Partition recursively until stopping criterion met
— Each iteration: choose best partition of subclusters k € {2,3,4,5} given data
subset Y C Z using the gap statistic [5]:

~ MSEq,(k) MSEq(k)
9(k) = log jraE (1) ~ "B MSE(7)
MSEq(k) = min, 3, ||¢i — u[P.1]||3: distance from each point to its closest cluster

‘center’ in the kernel’'s RKHS

Qx: reference data distribution, uniformly sampled from oriented bounding box of Q:

Proposed clustering Reference distribution

Step 2: Cluster results
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Step 3. Sampling

KDE - Nonparametric sampling from clusters:

m For each discovered cluster C; in the latent space, construct a kernel
density estimator and sample from it to obtain desired number of new

timeseries
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original points sampled — low « sampled — high &
m Plug-in estimator [6] of bandwidth B with factor « for greater variation

m Choose max. bandwidth factor « allowed by 2-sample MMD test [/]

Step 4: Generation

m Decode latent space back to time-series (original) space and
generated time-series to original spatial location belonging to cluster

m New time series retains statistical and temporal properties
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