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Generate Antarctic sub-shelf melt using recurrent neural
network-based Generative Adversarial Models on pixel clusters

e Evaluation metrics: quality of synthetic vs emulated data — PCA [5], 1-SNE [6], KPSS [7]
Approach: Identify Stationary Subspaces for Data Generation via Dynamic Agglomerative Clustering [3]

Antarctic lce Sheet ice loss accelerated by surrounding ocean’s extreme warming over last 30

years — dominant contributor to global sea level rise

Questions:

— How much ice loss due to anthropogenic changes and to internal variability [1]?

— Does internal climate variability introduce significant uncertainty into projections of the
Antarctic contribution to future sea level rise?

Goal: using limited model output — one realization of 150-year simulation of pre-industrial

variability of sub-shelf melt rates from expensive state-of-the-art Earth System model (E3SM)

[2] — develop/apply machine learning methods to generate additional realizations

Previous work: identified stationary subspaces of input data — realistic (physically consistent)

and representative of complex spatiotemporal dynamics [3]

Results: TimeGAN can generate realizations of basal melt rates preserving the temporal

dynamics and stationarity

Prerequisites prior to data generation: identify individual subspaces in data that are:
representative of its spatiotemporal dynamics,
realistic in terms of consistency with physically observed dynamics, and

stationary over the entire time-series, regardless of the behavior of the data within each
subspace relative to any other’s (may vary independently over arbitrary time-scales)

Idea: construct dynamic hierarchical clustering pipeline to adaptively learn stationary
subspaces, the number of which can grow or shrink in a data-driven fashion according to

the data dynamics while simultaneously incorporating relevant prior domain knowledge

(e.g. physical observations, problem setting). —breaks data into sequence of temporal problems

Notation: Let p; = (x4,y4) and p, = (x,,y,) be 2 pixel locations given by their 2D
coordinates on the Antarctic Ice Sheet. Note that each pixel spans 70 km. Ice melt flux time-
series at these locations: F;, = (f, ..., i) and F, = (£}, ..., 1), where M denotes the
number of time-steps in the simulation, which for this data is a monthly resolution over 750

years, for M = 1800 time-steps. Normalized versions denoted:F,, = =

1.
2.
3.

Filchner-Ronne

the spatial-distance threshold denoted:d},,,..
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Stationarity: evaluate stationarity of each identified cluster using Kwiatkowski-Philips-Schmidt-Shin
(KPSS) hypothesis test with null hypothesis that the cluster’s time-series is stationary around the mean
— cluster deemed stationary if majority of pixels pass the KPSS test

for k € {1,2}, and
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Method: Time-series Generative Adversarial Network (TimeGAN) [4]

TimeGAN: learns good generative model for time-series data that preserves temporal
dynamics — new sequences respect original relationships between variables across time [4]

Architecture: consists of four unique Recurrent Neural Networks (RNNs; e.g. LSTM, GRU):

TimeGan Network Architecture
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Generated data examples
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Cluster 1 — time-series data of T = 300 (~25 yrs)
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Original data examples
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Data Generation: Examples of Original E3SM vs TimeGAN Generated Realizations

e Train TimeGAN on individual
stationary cluster’s respective
‘real’ time-series data

e Each cluster — treated as its
own independent data
distribution for GAN to train
generative model

e Generate data from each
cluster’s generative model

Cluster 2 — data of T = 100 (~8 yrs)
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Evaluation: How ‘good’ are the TimeGAN generated realizations?

Metrics to quantify distributions’ consistency & similarity— generated data vs. input data:

1. Principal Components Analysis (PCA) [5]
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— Flatten temporal dimension s.t.
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2. t-Distributed Stochastic Neighbor Embedding (t-SNE) [6]

— Method to quantify/visualize
similarity of data — capable of
retaining local structure of (high
dimensional) data and revealing
important global structure
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— Shows: GAN preserves
stationarity - like the real (training)
data, both clusters’ generated data
pass the KPSS stationarity test
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Conclusions, Impact, and Outlook

g

e Results show TimeGAN can generate realizations of variable Antarctic sub-shelf
melt that preserves the temporal dynamics and stationarity

e Evaluation summary: all 3 metrics show that spatial clustering + TimeGAN can
generate data similar to input data — preserving temporal dynamics and stationarity —
PCA and t-SNE: data have similar temporal dynamics in a lower dimensional space,
KPSS shows generated data retains the input data's stationarity

e This work addresses the general pervasive problem of data scarcity in the climate
sciences — far more computationally efficient than running climate model

e Spoiler: Current work includes further, advanced quality metrics & incorporating
advanced discriminator functions for built-in domain-agnostic non-parametric
g high-dim distribution comparisons [e.g. 8, 9]
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