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ABSTRACT
Air pollution is an important topic on countless fronts and is an ac-
tive area of research. The goal of this work is to provide a machine
learning model for learning and inference of pollution concentra-
tions and air quality measures, namely Particulate Matter 2.5, NO3 ,
Nitrate Pollution, and NH4 , Atmospheric Ammonium, with high
granularity by using easily obtainable satellite imagery data. In
order to achieve this, we propose the fully convolutional network
U-net that, unlike previous work, can predict these pollutant values
at a pixel-level high-resolution instead of being able only to predict
a single value for an entire geographical region. We demonstrate
that this approach can reconstruct the considered pollutant concen-
trations on ground-truth data and can predict the concentrations
and their spatial structure reasonably well, even for data that the
network has temporally not yet seen. Finally, we illustrate that the
model’s pollutant predictions can offer valuable insights into the
current COVID-19 pandemic.
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1 INTRODUCTION
In 2020 the UnitedNations Environment Programme (UNEP), United
Nations Human Settlement Programme (UN-Habitat) and IQAir
AG announced the release of the largest air quality data platform
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to date. While this inititive’s announcement focuses on the health
aspects of pollution the value of this data set are not to be under-
stated. In 2019 with the outbreak of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), commonly referred to as
COVID-19 and the discovery of SARS-CoV-2 RNA on air pollution
the value in this data and the potential to not just measure local
but also gain insight into the movement of air pollution became of
interest. While SARS-CoV-2 is primarily related to PM2.5 and PM10,
Particulate Matter pollution of 2.5 and 10 micrometers and smaller
in diameter respectively, other interests, health, environmental and
agricultural, are also interested in other pollution and air quality
measures, in particular NO3 , Nitrate Pollution, and NH4 , Atmo-
spheric Ammonium.

Furthermore, it is important to note the connections between the
lethality rate of COVID-19 and high levels of atmospheric pollution.
For example, in [8] these connections are explored in Lombardy
and Emilia Romagna. In particular, the paper studies the correlation
between pollution, which is a known instigator of chronic lung
disease even in young and other wise healthy subjects, and the
lethality of SARS-CoV-2. A similar result for the lethality in the
United States [19] using county level fatality rate, and county level
long term air pollution, shows that, after adjusting for other known
factors, that there is a strong correlation between the concentration
of particulate matter 2.5 micrometers or less in diameter, or PM2.5,
and the county level lethality. Specifically, a 1 µд

m3 increase in PM2.5
corresponds to an 8% increase in the fatality rate.

However, as observed in [7], there is also a correlation between
PM2.5 air pollution and the number of reported cases. This sug-
gests that pollution-to-human may serve as another transmission
dynamic for SARS-CoV-2. These two results suggest a two factor
vulnerability to SARS-CoV-2 caused by increased particulate matter
in the air: On one hand it increases the likelihood of having a more
severe reaction to infection, and the other it serves a transmission
vector.

Traditionally, PM2.5 concentration data can be obtained from
ground sensors and measurement stations. However, the spatial
resolution of these measurements is greatly limited by the sparsity
of sensor networks. Thus, detailed pollution maps have been de-
veloped that integrate heterogeneous data sources (see e.g. [18]).
Namely, they proposed a PM2.5 estimation of fusing aerosol op-
tical depth information computed from satellite imagery with a
chemical transport model and regional ground-based observations.
With this, they published a database of estimated monthly pollu-
tant concentrations over several countries. This data was used as
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Figure 1: Network structure for predicting pollutant (PM2.5 , NO3 , NH4 ) concentrations from multispectral imagery. The net-
work follows the classic U-net [15] architecture.

the basis for the aforementioned study by [19] linking PM2.5 con-
centrations to COVID-19 mortality rates. Although this historical
data helped establish this causality relationship, up-to-date/live
pollution information is still needed to monitor pollutants such as
PM2.5, NO3 , and NH4 (i.e. pollutant concentration data past the
range 2001-2017).

Recently, there has been a growing interest in retrieving spatio-
temporal air quality products based on high resolution optical satel-
lite missions such as Landsat 8 [5], utilizing top-of-atmosphere
image reflectances as a basis for directly predicting pollution pa-
rameters. To the best of our knowledge, dense (per-pixel) pollution
level prediction with fully convolutional neural networks has not
yet been described in literature. On the other hand, a number of au-
thors perform ’sparse’ (i.e. patch or region granularity) estimation
using classical convolutional neural network architectures. Li et
al. [11] utilized deep belief networks to predict PM2.5 levels in China
from MODIS (Moderate Resolution Imaging Spectroradiometer)-
derived aerosol optical depth (AOD) fused with meteorological
parameters. Shen et al. [17] utilized a similar approach, but re-
gressed ground-level PM2.5 concentrations directly from top-of-
atmosphere reflectances instead of AOD layers. Recently [23], a con-
volutional neural network was applied to high-resolution imagery
from commercial micro-satellites in order to extract informative fea-
tures for random-forest based regression of PM2.5 concentrations.
A multi-layer perceptron network was used for predicting particu-
late matter concentrations from Landsat 8 imagery [21]. Moreover,
several contributions deal with estimating particulate matter lev-
els from street (terrestrial perspective) imagery by means of deep
learning. In [22], an ensemble of deep neural networks is used as a
basis for classification of PM2.5 and PM10 with a granularity of 6
categories. Another contribution [14] proposes an ensemble of 3
deep learning networks aggregated by a feed-forward network in
the role of the meta-learner for regression of the pollution levels.

The primary goal of this work is to provide a machine learn-
ing model capable of estimating the pollutants’ PM2.5 , NO3 , and
NH4 concentrations with high granularity comparable to the data
gathered by [18] (details in Sec.3) using plentiful, publicly available
satellite imagery. Unlike previous work, the fully convolutional

neural network U-net we employ can predict these pollutant values
at a pixel-level high-resolution instead of predicting only a single
value for an entire region.The paper is organized as follows: Sec. 2
introduces the proposed U-net model, Sec. 3 presents the data, Sec. 4
describes the experiments and results, and finally Sec. 5 provides a
summary of the work and outlook.

2 U-NET MODEL FOR POLLUTANT AGENTS
We build upon the well known U-net architecture [15] to predict
dense (per-pixel) pollutant concentrations from multispectral satel-
lite imagery. Since its introduction in 2015, the U-net has been
successfully applied to various semantic segmentation tasks, E.g.
in medical imaging [9] and astronomy [6]. As a fully convolutional
network (and hence devoid of fully connected layers), the U-net
can be applied to an image of arbitrary size in a sliding window/tile
based fashion. The U-net consists of two symmetrical parts. The
encoder path downsamples the original image into meaningful
features by means of convolutional filters and pooling operations,
whereas the upsampling path aims at decoding these features into
a full-sized output map using transposed convolution operations,
driven by an appropriate loss function. Moreover, upsampling lay-
ers are augmented with feature maps from the downsampling path
at the corresponding resolution, to provide more context informa-
tion. The original U-net was meant for classification and featured
a softmax layer after the top-level upsampling layer’s output, re-
sulting in per-class posterior probabilities meant to be optimized
with using a cross-entropy type objective with discrete ground-
truth labels. However, the U-net has also been used directly for
dense regression, by removing the softmax layer and optimizing the
squared difference between the upsampled output and a continuous
target variable [13, 20]. In this work, we adopt a similar approach.
Let S = {(xi ,yi )}, 1 ≤ i ≤ N denote a set of predictor variable
vectors x and matching continuous response variables y (i.e. the
target pollutant concentration), while f (x |θ ) indicates the predic-
tion function (i.e. the U-net) parameterized by θ . In the case of fully
convolutional networks, the parameter θ comprises the set of train-
able convolutional and transposed convolutional filter parameters,
i.e. the weight and bias matrices. Although most state-of-the-art
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activation functions, such as the rectified linear unit (ReLU), do
not contribute any parameters, there are also emerging approaches
which attempt to learn the optimal activation function together
with the filter parameters [12]. The optimization objective can be
formulated as:

argmin
θ

∑
i
wi |yi − f (xi |θ )|

2 (1)

It is well known that least squares regression estimates the con-
ditional mean of the response variable given the predictors, and is
therefore sensitive to outliers. To alleviate this, we eliminate out-
liers from the training set by discarding pairs (xi ,yi ) such that yi
is below the 0.01-th or above the 0.99-th quantile of its distribution.
This is achieved by setting the weightswi corresponding to such
pixels within the training images to 0. Otherwise, the respective
weights are set to unity.

3 DATA
In order to address this problem, we use satellite imagery as a source
of predictor variables, and approximate pollutant concentrations
published by [18] for the time period of 2000-2017 in the role of
ground-truth.

Satellite data. This study was based on Landsat 8 satellite im-
agery published by the United States Geological Survey (USGS) [5].
Landsat 8 is the latest installment in a series of Earth observation
missions dating back to 1972 (Landsat 1), which provide planet-wide
imagery from multispectral, spaceborne optical sensors. Landsat
uses its own coordinate system [2], which assigns coordinates to
an image frame based on nominal satellite orbital tracks and the
frame’s latitudinal center line, resulting in a 2-tuple of (path,row)
coordinates. The ground coverage cycle length is 16 days, which
means that new data for an image frame is published approxi-
mately twice per month. Landsat 8 images contain a total of 11
spectral bands, ranging in wavelengths from 0.435 um (band 1 -
coastal/aerosol) to 12.51 um (band 11 - thermal infrared). The spatial
resolution (i.e. ground sampling distance per pixel) of the images
ranges from 15m (panchromatic band 8) through 30m (bands 1-7, 9),
up to 100 m (bands 10-11). We used the USGS Earth Explorer [4] as
well as the Landsat dataset mirror on Amazon AWS [1] to download
the imagery.

Pollution data. We downloaded monthly total PM2.5 , NO3 ,
and NH4 concentration maps for North America from the FTP
server of Dalhousie University, Canada, published by Aaron van
Donkelaar and collaborators [3]. These maps are made available at
a resolution of 0.01 degrees per pixel and feature a standard WGS84
coordinate reference system. The pollutant particulate concentra-
tion was obtained via a hybrid approach which simulates geophys-
ical relationships between aerosol optical depth (estimated from
multi-source satellite imagery) and PM2.5 concentration based on
the GEOS-Chem chemical transport model, and fuses the estimates
with ground measurements obtained from the US Environmen-
tal Protection Agency’s Air Quality System as well as Canada’s
National Air Pollution Surveillance [18]. Moreover, estimates of
various component pollutants contributing to the total PM2.5 are
derived from simulated relative composition. The authors report
good long term agreement of predicted pollutant agent concentra-
tions with ground-truth validation sites (R2 coefficients of 0.59-0.90).

We considered only the period after the Landsat 8 mission became
active, resulting in a time interval from March 2013 to December
2017.

Preprocessing.The Landsat imagerywas first reprojected to the
WGS84 coordinate system, and downsampled to the ground-truth
resolution of 0.01 degrees (the panchromatic band was dropped). To
match the temporal resolution of the ground-truth, we computed
per-band average images grouped by month of acquisition. Next,
we derived a per-pixel mask of regions within the image covered
by cirrus clouds and hence not suitable for analysis. This was done
on the basis of the Landsat band 9 (1.360-1.390 um), which was
designed to detect high-altitude clouds. We used the estimated
cloud cover percentage [10], available as part of image metadata,
to remove the pixels locations having reflectance values in band 9
within the corresponding top quantile. Finally, we combined the
cloud cover mask with the data availability mask from the ground-
truth PM2.5 maps, representing other features that do not have
available data E.g. missing data over large bodies of water. Also,
pixels corresponding to the top and bottom 1% of ground-truth
values were masked out as outliers (see Fig. 5). All input Landsat
imagery bands were normalized to the interval [0;1] individually
per band.

4 NUMERICAL EXPERIMENTS
We selected an initial number N = 114 Landsat images, spanning
March 2013 to December 2017, of 24major cities from representative
regions of the United States (see Fig. 2) and preprocessed them as
described in Sec. 3. Next, we defined our ground-truth data as these
images paired with corresponding pollutant images from which we
use an 80:20% random split to create training/testing set of 91:23
images, illustrated in Fig. 2 with the green boxes. A U-net model
based on adapting the implementation by [6] was trained separately
for each pollutant (PM2.5 , NO3 , NH4 ) using an ADAM optimized
over 500 epochswithminibatch size of 15 and 100 internal iterations,
with the following parameterization: dropout ratio was 0.5, learning
rate 0.00005. The network had a depth of 3 layers, with 32 filters at
the top level. The convolutional kernel size was 3x3, and at each
level 2x2 max-pooling operations were used. We applied the tiling
strategy proposed by Ronneberger et al. [15] with a tile size of
200x200 pixels.

1: Sanity check with ground-truth.
At the end of training, the networks converged to root mean

square error values of 1.24, 2.10, and 1.64 µд/m3 respectively for
PM2.5 , NO3 , and NH4 (see Fig. 3). The corresponsing mean ab-
solute errors of the predictions were 0.81, 1.44, and 1.14 µд/m3.
Considering the inter-quantile ranges between the 0.01-th and 0.99-
th quantiles for the ground truth distribution of the three pollutants
(see Fig.5), the mean absolute deviations constituted 4%, 3%, and 7%
of the respective pollutant concentration ranges. Thus the U-net
converged and was able to learn ground-truth pollutant concentra-
tions with reasonably low error.

2: Generalizability to temporally novel data.
To assess the ability of our model to generalize in the temporal

domain, we utilized 23 previously unseen images that overlapped
with the training set spatially but not temporally. The test set con-
tained images from 15 of the 24 cities. The mean absolute deviations

130



CI2020, September 22–25, 2020, virtual, United Kingdom Shelton, Polewski, Yao

Figure 2: Locations of US cities chosen to reasonably represent the diverse US geography for our study. Rectangles indicate
the bounding boxes of the Landsat images’ locations. Green boxes define regions used for training and validation, whereas
blue boxes represent regions used exclusively for testing. The background color maps represents average concentrations, in
micrograms per cubic meter, of PM2.5 , NO3 , and NH4 in 2017. The corresponding distributions of the training and test data
for these pollutants are shown in Fig. 5

Figure 3: Convergence of training process measured by root
mean squared error loss function on training set respec-
tively for NO3 , NH4 , and PM2.5 .

for predictions on this test set were 2.23, 4.75, and 2.24 µд/m3 re-
spectively for PM2.5 , NO3 , and NH4 . This corresponded to 11.3%,
11.1%, and 14.1% of the inter-quantile distance. See Fig. 4 for an
example of predicted pollutant concentration maps on previously
unseen data. These maps illustrate that the network can reconstruct
the ground-truth concentrations of each pollutant with which it
can represent the spatial structure of these pollutants.

3: Cities with similar pollution profile.
We selected 24 new images at 20 additional locations within

the United States (see Fig. 2, blue boxes), showing visually similar
distributions of groundtruth pollutant concentrations within the
Landsat image frames to the original training cities, in order to eval-
uate the performance of predicting the concentrations at locations
unseen during training. The obtained mean absolute error was 2.46,
4.07, 2.27 µд/m3 respectively for PM2.5 , NO3 , and NH4 , yielding
percentages of the inter-quantile ranges of 12.4%, 9.5%, and 14.2%.
This shows that the network was able to generalize equally well in
the spatial and temporal domains.

4: Predicting pollutant PM2.5 for COVID-19.
Following the outbreak of COVID-19, there has been a great

deal of research into its understanding. Important results [7, 8,
19] suggest a two factor vulnerability to SARS-CoV-2 caused by
increased particulate matter in the air: On one hand it increases
the likelihood of having a more severe reaction to infection, and
the other it serves a transmission vector. Furthermore, detailed
pollution maps have been developed that integrate heterogeneous
data sources (see e.g. [18]) which were used by [19] directly linking

PM2.5 concentrations to COVID-19 mortality rates. Inferring air
pollutants with reasonable accuracy, which we have demonstrated
in Experiments 1-3 allows us to – essentially for free – highlight
more dangerous regions wherein one is more likely to contract the
virus.

The goal of the fourth experiment is to verify that our model
can predict expected PM2.5 concentration trends at time points be-
fore and after the government mandated lock-down in March 2020
intended to hinder the spread of SARS-CoV-2 (which consequently
e.g. drastically reduced industrial emissions). We applied the U-net
learned in Exp. 3 to satellite images of Los Angeles, CA from 2018,
2019, and early 2020. The results, shown in Fig. 6, illustrate that the
U-net was able to learn PM2.5 concentrations consistent with world
events at the time. Namely, the pollution is inferred to be notably
higher before the lock-down than after the lock-down, shown by the
considerable shift of the predicted PM2.5 distribution’s 0.9 quantile,
i.e. its 99th percentile, from 13.2 in October 2019 to 9.7 in April 2020.
Additionally, our approach was able to successfully isolate regions
in LA that are the most densely populated by predicting higher pol-
lutant PM2.5 values. This suggests that our approach can generalize
to new data and reliably predict pollutant PM2.5 concentrations and
their spatial structure, which informs on the presence and lethality
of SARS-CoV-2.

5 DISCUSSION
The capability of measuring, monitoring, and predicting pollutant
concentrations and their behavior is of crucial importance. Cur-
rently, the database established by [18] containing estimates of
monthly pollutant concentrations over several countries is among
the best sources for this information.

The goal of the present work was to learn and infer air pollutants,
in particular PM2.5 , particulate matter 2.5, NO3 , Nitrate Pollution,
and NH4 , Atmospheric Ammonium, at higher temporal and spatial
resolution than has been done previously and to do so using readily
available satellite imagery. For this, we proposed the use of a fully
convolutional neural network known as a U-net that can, unlike
previous work, predict these pollutant values at a pixel-level high-
resolution instead of only predicting a single value for an entire
region.

Additionally, we have demonstrated an important practical appli-
cation of our approach. SARS-CoV-2 lethality has been concretely
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Figure 4: Examples of pollutant concentrations predicted by the U-net for new temporal data at locations used during training,
respectively for NO3 , NH4 , and PM2.5 . The network is able to reconstruct the ground-truth concentrations of each pollutant,
from which it follows, it can capture the spatial structure of these pollutants in the given satellite image.

Figure 5: Distributions of the average pollutant concentra-
tion values of ground-truth training and test data, calculated
from values within respectively the green and blue squares
in Fig. 2 for PM2.5 , NO3 , and NH4 . The corresponding train-
ing and test ground-truth values show similar distributions
for all 3 pollutants.

linked to the concentration of pollutant particulate matter, where
a slight increase in PM2.5 can drastically enhance the morbidity
rate. Reliable predictions of the spatial structure and concentra-
tions of PM2.5 can help identify regions where SARS-CoV-2 may

Figure 6: Density of predicted PM2.5 concentrations in Los
Angeles for time periods before and during the COVID-19
outbreak and subsequent lock-down (top) and correspond-
ing Landsat images with their predicted PM2.5 pollution
maps (bottom). As expected, we see a significant reduction
in the 0.9-quantile of the predicted PM2.5 pollution distribu-
tions between April 2020 (immediately after the lock-down
began) and the previous years. The predicted PM2.5maps
match this trend, showing relatively less pollution in 2020
(darker pixels). Interestingly, yet unsurprisingly, the most
densely populated regions of LA (encircled in red on the
map) are predicted to have higher PM2.5 concentrations for
all of the years, as shown in the predicted PM2.5 pollution
maps.

be particularly transmissible and lethal can provide critical advice
to implementable public health strategies.

In future work, we plan to include other types of pollutants in
training the network. Furthermore, we intend to explore simulta-
neously learning multiple pollutant concentrations using a form
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of mult-task learning [16]. Moreover, it would be interesting to ex-
plore synthetic data generated e.g. through simulation to gain better
insights into the performance of our method for time intervals and
spatial locations where true ground truth is missing.
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